在MP2水平上采用6-311G基组计算了van der Waals复合物X…H2O(X=Li,Na,K)的非线性光学性质(μα,β),讨论了基组效应和电子相关效应对计算结果的贡献.在MP2/6-311++G(2df,2pd)水平上计算得到的三个复合物分子X(X=Li,Na,K)…H2O的非线...在MP2水平上采用6-311G基组计算了van der Waals复合物X…H2O(X=Li,Na,K)的非线性光学性质(μα,β),讨论了基组效应和电子相关效应对计算结果的贡献.在MP2/6-311++G(2df,2pd)水平上计算得到的三个复合物分子X(X=Li,Na,K)…H2O的非线性光学性质.结果表明,三种复合物分子均具有巨大的一阶超极化率,其中最外层电子的弥散特性对一阶超极化率有很大的影响.展开更多
基于文献报道的实验数据,采用相图计算(CALPHAD:CALculation of PHAse Diagrams)方法对V-M(M=Li,Na,K,Sc,Ag)5个二元系进行相图热力学研究。通过热力学优化计算获得了一套描述液相、(V)、(Li)、(Na)、(K)、(αSc)、(βSc)和(Ag)相的热...基于文献报道的实验数据,采用相图计算(CALPHAD:CALculation of PHAse Diagrams)方法对V-M(M=Li,Na,K,Sc,Ag)5个二元系进行相图热力学研究。通过热力学优化计算获得了一套描述液相、(V)、(Li)、(Na)、(K)、(αSc)、(βSc)和(Ag)相的热力学参数。V-Li、V-Na和V-K体系中的气相视为由组元V、Li、Li2、Na、Na2、K和K2混合的理想气体。与实验相图数据对比表明,获得的热力学参数能够准确地描述实验相平衡数据。展开更多
采用相图计算(CALPHAD:Calculation of phase diagrams)方法对Zr-X(X=Li,Na,K,Sc,Hf)5个二元体系进行了相图热力学研究.基于实验数据,通过热力学优化计算获得了一套描述液相及(αZr),(βZr),(Li),(Na),(K),(αSc),(βSc),(αHf)和(βHf...采用相图计算(CALPHAD:Calculation of phase diagrams)方法对Zr-X(X=Li,Na,K,Sc,Hf)5个二元体系进行了相图热力学研究.基于实验数据,通过热力学优化计算获得了一套描述液相及(αZr),(βZr),(Li),(Na),(K),(αSc),(βSc),(αHf)和(βHf)相的热力学参数.Zr-Li,Zr-Na和Zr-K体系中的气相视为理想气体.与实验相图数据对比发现,本文获得的热力学参数能够准确地描述实验相平衡数据.展开更多
锰酸锂正极材料在充放电循环过程中容量衰减严重,严重影响其大规模应用。针对其容量衰减严重的问题,通过固相制备出Li_(0.95)Na_(0.05)Mg_(0.1)Mn_(1.9)O_4正极材料,并用X射线衍射光谱法(XRD)、扫描电子显微镜法(SEM)、能量散射光谱(EDS...锰酸锂正极材料在充放电循环过程中容量衰减严重,严重影响其大规模应用。针对其容量衰减严重的问题,通过固相制备出Li_(0.95)Na_(0.05)Mg_(0.1)Mn_(1.9)O_4正极材料,并用X射线衍射光谱法(XRD)、扫描电子显微镜法(SEM)、能量散射光谱(EDS)、充放电测试、CV和EIS对其结构、形貌及电化学性能进行了研究。结果表明,Mg2+、Na+的掺杂未改变Li Mn2O4的结构。在0.2 C下,样品Li Mn2O4和Li_(0.95)Na_(0.05)Mg_(0.1)Mn_(1.9)O_4的首次放电比容量分别为127.1 m Ah/g和123.3 m Ah/g,充放电循环100次后,其容量保持率分别为77.34%和94.81%,Mg2+、Na+掺杂后,材料的初始放电比容量略有降低,但循环性能明显得到了改善。在10 C下,Li_(0.95)Na_(0.05)Mg_(0.1)Mn_(1.9)O_4的放电比容量高达92.4 m Ah/g。实验表明,Mg2+、Na+的共同掺杂有效改善了Li Mn2O4的循环稳定性和倍率性能。展开更多
用溶胶凝胶法合成了Na+离子掺杂的Li_(1-x)Na_xMn_2O_4(x=0,0.01,0.03,0.05)。X射线衍射图表明Na+取代Li+进入Li_(1-x)Na_xMn_2O_4晶格中,扫描电镜图看出产物是粒径为100~300 nm的颗粒。恒流充放电测试结果表明,Li_(0.97)Na_(0.03)Mn_2...用溶胶凝胶法合成了Na+离子掺杂的Li_(1-x)Na_xMn_2O_4(x=0,0.01,0.03,0.05)。X射线衍射图表明Na+取代Li+进入Li_(1-x)Na_xMn_2O_4晶格中,扫描电镜图看出产物是粒径为100~300 nm的颗粒。恒流充放电测试结果表明,Li_(0.97)Na_(0.03)Mn_2O_4在2C倍率下循环100圈后放电容量保持率比未掺杂的LiMn_2O_4从51.2%提升到84.1%。循环伏安测试表明Na+离子掺杂降低了材料极化且增大了锂离子扩散系数。10C倍率下Li0.97Na0.03Mn2O4仍有79.0 m Ah·g-1的放电容量,高于未掺杂样品的52.1 m Ah·g^(-1)。Na+离子掺杂可以稳定材料结构并提高锂离子扩散系数,从而提高LiMn_2O_4的电化学性能,是一种可行的改性方法。展开更多
文摘在MP2水平上采用6-311G基组计算了van der Waals复合物X…H2O(X=Li,Na,K)的非线性光学性质(μα,β),讨论了基组效应和电子相关效应对计算结果的贡献.在MP2/6-311++G(2df,2pd)水平上计算得到的三个复合物分子X(X=Li,Na,K)…H2O的非线性光学性质.结果表明,三种复合物分子均具有巨大的一阶超极化率,其中最外层电子的弥散特性对一阶超极化率有很大的影响.
文摘基于文献报道的实验数据,采用相图计算(CALPHAD:CALculation of PHAse Diagrams)方法对V-M(M=Li,Na,K,Sc,Ag)5个二元系进行相图热力学研究。通过热力学优化计算获得了一套描述液相、(V)、(Li)、(Na)、(K)、(αSc)、(βSc)和(Ag)相的热力学参数。V-Li、V-Na和V-K体系中的气相视为由组元V、Li、Li2、Na、Na2、K和K2混合的理想气体。与实验相图数据对比表明,获得的热力学参数能够准确地描述实验相平衡数据。
文摘采用相图计算(CALPHAD:Calculation of phase diagrams)方法对Zr-X(X=Li,Na,K,Sc,Hf)5个二元体系进行了相图热力学研究.基于实验数据,通过热力学优化计算获得了一套描述液相及(αZr),(βZr),(Li),(Na),(K),(αSc),(βSc),(αHf)和(βHf)相的热力学参数.Zr-Li,Zr-Na和Zr-K体系中的气相视为理想气体.与实验相图数据对比发现,本文获得的热力学参数能够准确地描述实验相平衡数据.
文摘锰酸锂正极材料在充放电循环过程中容量衰减严重,严重影响其大规模应用。针对其容量衰减严重的问题,通过固相制备出Li_(0.95)Na_(0.05)Mg_(0.1)Mn_(1.9)O_4正极材料,并用X射线衍射光谱法(XRD)、扫描电子显微镜法(SEM)、能量散射光谱(EDS)、充放电测试、CV和EIS对其结构、形貌及电化学性能进行了研究。结果表明,Mg2+、Na+的掺杂未改变Li Mn2O4的结构。在0.2 C下,样品Li Mn2O4和Li_(0.95)Na_(0.05)Mg_(0.1)Mn_(1.9)O_4的首次放电比容量分别为127.1 m Ah/g和123.3 m Ah/g,充放电循环100次后,其容量保持率分别为77.34%和94.81%,Mg2+、Na+掺杂后,材料的初始放电比容量略有降低,但循环性能明显得到了改善。在10 C下,Li_(0.95)Na_(0.05)Mg_(0.1)Mn_(1.9)O_4的放电比容量高达92.4 m Ah/g。实验表明,Mg2+、Na+的共同掺杂有效改善了Li Mn2O4的循环稳定性和倍率性能。
文摘用溶胶凝胶法合成了Na+离子掺杂的Li_(1-x)Na_xMn_2O_4(x=0,0.01,0.03,0.05)。X射线衍射图表明Na+取代Li+进入Li_(1-x)Na_xMn_2O_4晶格中,扫描电镜图看出产物是粒径为100~300 nm的颗粒。恒流充放电测试结果表明,Li_(0.97)Na_(0.03)Mn_2O_4在2C倍率下循环100圈后放电容量保持率比未掺杂的LiMn_2O_4从51.2%提升到84.1%。循环伏安测试表明Na+离子掺杂降低了材料极化且增大了锂离子扩散系数。10C倍率下Li0.97Na0.03Mn2O4仍有79.0 m Ah·g-1的放电容量,高于未掺杂样品的52.1 m Ah·g^(-1)。Na+离子掺杂可以稳定材料结构并提高锂离子扩散系数,从而提高LiMn_2O_4的电化学性能,是一种可行的改性方法。