Rechargeable sodium-ion batteries usually suffer from accelerated electrode destruction at high temperatures and high synthesis costs of electrode materials.Therefore,it is highly desirable to explore novel organic el...Rechargeable sodium-ion batteries usually suffer from accelerated electrode destruction at high temperatures and high synthesis costs of electrode materials.Therefore,it is highly desirable to explore novel organic electrodes considering their cost-effectiveness and large adaptability to volume changes.Herein,natural biomass,pristine lignin,is employed as the sodium-ion battery anodes,and their sodium storage performance is investigated at room temperature and 60℃.The lignin anodes exhibit excellent high-temperature sodium-ion battery performance.This mainly results from the generation of abundant reactive sites(C=O)due to the high temperature-induced homogeneous cleavage of the C_(β)-O bond in the lignin macromolecule.This work can inspire researchers to explore other natural organic materials for large-scale applications and high-value utilization in advanced energy storage devices.展开更多
Sodium-ion batteries(SIBs)are considered to be attractive candidates for large-scale energy storage systems because of their rich earth abundance and consistent performance.However,there are still challenges in develo...Sodium-ion batteries(SIBs)are considered to be attractive candidates for large-scale energy storage systems because of their rich earth abundance and consistent performance.However,there are still challenges in developing desirable anode materials that can accommodate rapid and stable insertion/extraction of Na+and can exhibit excellent electrochemical performance.Herein,the self-assembled hairball-like VS4 as anodes of SIBs exhibits high discharge capacity(660 and 589 mAh g−1 at 1 and 3 A g−1,respectively)and excellent rate property(about 100%retention at 10 and 20 A g−1 after 1000 cycles)at room temperature.Moreover,the VS4 can also exhibit 591 mAh g−1 at 1 A g−1 after 600 cycles at 0°C.An unlike traditional mechanism of VS4 for Na+storage was proposed according to the dates of ex situ characterization,cyclic voltammetry,and electrochemical kinetic analysis.The capacities of the final stabilization stage are provided by the reactions of reversible transformation between Na2S and S,which were considered the reaction mechanisms of Na–S batteries.This work can provide a basis for the synthesis and application of sulfur-rich compounds in fields of batteries,semiconductor devices,and catalysts.展开更多
Sodium-ion batteries(SIBs)have been extensively studied as the potential alter-native to lithium-ion batteries(LIBs)due to the abundant natural reserves and low price of sodium resources.Nevertheless,Na+ions possess a...Sodium-ion batteries(SIBs)have been extensively studied as the potential alter-native to lithium-ion batteries(LIBs)due to the abundant natural reserves and low price of sodium resources.Nevertheless,Na+ions possess a larger radius than Li+,resulting in slow diffusion dynamics in electrode materials,and thus seeking appropriate anode materials to meet high performance standards has become a trend in the field of SIBs.In this context,owing to the advantages of high theoretical capacity and proper redox potential,metal phosphides(MPs)are considered to be the promising materials to make up for the gap of SIBs anode materials.In this review,the recent development of MPs anode materials for SIBs is reviewed and analyzed comprehensively and deeply,including the synthesis method,advanced modification strategy,electrochemical performance,and Na storage mechanism.In addition,to promote the wide application of the emerg-ing MPs anodes for SIBs,several research emphases in the future are pointed out to overcome challenges toward the commercial application.展开更多
基金financialy supported by the National Natural Science Foundation of China(nos.22078069,22178069,51903254)
文摘Rechargeable sodium-ion batteries usually suffer from accelerated electrode destruction at high temperatures and high synthesis costs of electrode materials.Therefore,it is highly desirable to explore novel organic electrodes considering their cost-effectiveness and large adaptability to volume changes.Herein,natural biomass,pristine lignin,is employed as the sodium-ion battery anodes,and their sodium storage performance is investigated at room temperature and 60℃.The lignin anodes exhibit excellent high-temperature sodium-ion battery performance.This mainly results from the generation of abundant reactive sites(C=O)due to the high temperature-induced homogeneous cleavage of the C_(β)-O bond in the lignin macromolecule.This work can inspire researchers to explore other natural organic materials for large-scale applications and high-value utilization in advanced energy storage devices.
基金supported by the National Natural Science Foundation of China (Grants Nos. 51772082,51574117,and 51804106)the Research Projects of Degree and Graduate Education Teaching Reformation in Hunan Province (JG2018B031)+1 种基金the Natural Science Foundation of Hunan Province (2019JJ30002,2019JJ50061)project funded by the China Postdoctoral Science Foundation (2017M610495, 2018T110822)
文摘Sodium-ion batteries(SIBs)are considered to be attractive candidates for large-scale energy storage systems because of their rich earth abundance and consistent performance.However,there are still challenges in developing desirable anode materials that can accommodate rapid and stable insertion/extraction of Na+and can exhibit excellent electrochemical performance.Herein,the self-assembled hairball-like VS4 as anodes of SIBs exhibits high discharge capacity(660 and 589 mAh g−1 at 1 and 3 A g−1,respectively)and excellent rate property(about 100%retention at 10 and 20 A g−1 after 1000 cycles)at room temperature.Moreover,the VS4 can also exhibit 591 mAh g−1 at 1 A g−1 after 600 cycles at 0°C.An unlike traditional mechanism of VS4 for Na+storage was proposed according to the dates of ex situ characterization,cyclic voltammetry,and electrochemical kinetic analysis.The capacities of the final stabilization stage are provided by the reactions of reversible transformation between Na2S and S,which were considered the reaction mechanisms of Na–S batteries.This work can provide a basis for the synthesis and application of sulfur-rich compounds in fields of batteries,semiconductor devices,and catalysts.
基金National Natural Science Founda-tion of China,Grant/Award Numbers:51925207,U1910210,51872277,51972067,51802044,51902062,51802043Funda-mental Research Funds for the Central Universities,Grant/Award Number:WK2060140026+2 种基金the DNL cooperation Fund,CAS,Grant/Award Number:DNL180310National Synchrotron Radi-ation Laboratory,Grant/Award Num-ber:KY2060000173Guangdong Nat-ural Science Funds for Distinguished Young Scholar,Grant/Award Number:2019B151502039。
文摘Sodium-ion batteries(SIBs)have been extensively studied as the potential alter-native to lithium-ion batteries(LIBs)due to the abundant natural reserves and low price of sodium resources.Nevertheless,Na+ions possess a larger radius than Li+,resulting in slow diffusion dynamics in electrode materials,and thus seeking appropriate anode materials to meet high performance standards has become a trend in the field of SIBs.In this context,owing to the advantages of high theoretical capacity and proper redox potential,metal phosphides(MPs)are considered to be the promising materials to make up for the gap of SIBs anode materials.In this review,the recent development of MPs anode materials for SIBs is reviewed and analyzed comprehensively and deeply,including the synthesis method,advanced modification strategy,electrochemical performance,and Na storage mechanism.In addition,to promote the wide application of the emerg-ing MPs anodes for SIBs,several research emphases in the future are pointed out to overcome challenges toward the commercial application.