P2-Na_(0.67)Ni_(0.33)Mn_(0.67)O_(2)(NNMO)is promising cathode material for sodium-ion batteries(SIBs)due to its high specific capacity and fast Na+diffusion rate.Nonetheless,the irreversible P2-O_(2)phase transformati...P2-Na_(0.67)Ni_(0.33)Mn_(0.67)O_(2)(NNMO)is promising cathode material for sodium-ion batteries(SIBs)due to its high specific capacity and fast Na+diffusion rate.Nonetheless,the irreversible P2-O_(2)phase transformation,Na+/vacancy ordering,and transition metal(TM)dissolution seriously damage its cycling stability and restrict its commercialization process.Herein,Na occupation manipulation and interface stabilization are proposed to strengthen the phase structure of NNMO by synergistic Zn/Ti co-doping and introducing lithium difluorophosp(LiPO_(2)F_(2))film-forming electrolyte additive.The Zn/Ti co-doping regulates the occupancy ratio of Nae/Nafat Na sites and disorganizes the Na+/vacancy ordering,resulting in a faster Na+diffusion kinetics and reversible P2-Z phase transition for P2-Na_(0.67)Ni_(0.28)Zn_(0.05)Mn_(0.62)Ti_(0.05)O_(2)(NNZMTO).Meanwhile,the LiPO_(2)F_(2)additive can form homogeneous and ultrathin cathode-electrolyte interphase(CEI)on NNZMTO surface,which can stabilize the NNZMTO-electrolyte interface to prevent TM dissolution,surface structure transformation,and micro-crack generation.Combination studies of in situ and ex situ characterizations and theoretical calculations were used to elucidate the storage mechanism of NNZMTO with Li PO_(2)F_(2)additive.As a result,the NNZMTO displays outstanding capacity retention of 94.44%after 500 cycles at 1C with 0.3 wt%Li PO_(2)F_(2),excellent rate performance of 92.5 mA h g^(-1)at 8C with 0.1 wt%Li PO_(2)F_(2),and remarkable full cell capability.This work highlights the important role of manipulating Na occupation and constructing protective film in the design of layered materials,which provides a promising direction for developing high-performance cathodes for SIBs.展开更多
To obtain human sodium/iodide symporter gene cDNA for studying its potential ability as a radioiodide treatment for melanoma, the hNIS gene cDNA was amplified with total RNA from human thyroid tissue by RT-PCR. The hN...To obtain human sodium/iodide symporter gene cDNA for studying its potential ability as a radioiodide treatment for melanoma, the hNIS gene cDNA was amplified with total RNA from human thyroid tissue by RT-PCR. The hNIS cDNA was inserted into cloning vector pUCm-T and subcloned into eukaryotic expression vector pc-DNA3. The pc-DNA3-hNIS and pc-DNA3 were transduced into melanoma cells (B16) by electroporation, and two cell lines termed B16-A and B16-B respectively were established. The uptake and efflux of iodide was examined in vitro. The three cell lines (B16-A, B16-B, B16) were injected subcutaneously into the right flank of C57 mice. Biodistribution study and tumor imaging were performed when the tumor reached approximately 10mm in diameter. The cloned hNIS cDNA sequence was identical with the published sequence. Two novel cell lines named 16-A containing pc-DNA3-hNIS and B16-B containing pc-DNA3 only were established. The resultant cell line B16-A accumulated 17 and 19 times more radioiodide in vitro than B16 and B16-B respectively. The iodide uptake reached the half-maximal level within 10 min, and reached a plateau at 30 min. The efflux of iodide was also rapid (T1/2eff=10min). The imaging shows in vivo uptake in expected sites including the salivary glands, thyroid, stomach, and hNIS-transduced tumor, whereas the nontransduced tumor was not visualized. The %ID/g of B16-A tumors at 1, 2, 4, 12, and 24h after injec- tion of 125I were 12.22±0.71, 10.91±0.72, 8.73±0.99, 1.24±0.29, and 0.19±0.03, respectively, which were signifi- cantly higher percentages than those for controlling tumors, p<0.01. However, biologic T1/2 was about 6 h. Our pre- liminary data indicate that the transduction of the hNIS gene per se is sufficient to induce iodide transport in mela- noma cells both in vitro and in vivo, but T1/2eff is short.展开更多
基金supported by the Natural Science Foundation of Shandong Province (ZR2023MB017,ZR2021QB055,ZR2020QB014,ZR2022JQ10)the National Natural Science Foundation of China (21901146,220781792,52007110)the Taishan Scholar Foundation (tsqn201812063)。
文摘P2-Na_(0.67)Ni_(0.33)Mn_(0.67)O_(2)(NNMO)is promising cathode material for sodium-ion batteries(SIBs)due to its high specific capacity and fast Na+diffusion rate.Nonetheless,the irreversible P2-O_(2)phase transformation,Na+/vacancy ordering,and transition metal(TM)dissolution seriously damage its cycling stability and restrict its commercialization process.Herein,Na occupation manipulation and interface stabilization are proposed to strengthen the phase structure of NNMO by synergistic Zn/Ti co-doping and introducing lithium difluorophosp(LiPO_(2)F_(2))film-forming electrolyte additive.The Zn/Ti co-doping regulates the occupancy ratio of Nae/Nafat Na sites and disorganizes the Na+/vacancy ordering,resulting in a faster Na+diffusion kinetics and reversible P2-Z phase transition for P2-Na_(0.67)Ni_(0.28)Zn_(0.05)Mn_(0.62)Ti_(0.05)O_(2)(NNZMTO).Meanwhile,the LiPO_(2)F_(2)additive can form homogeneous and ultrathin cathode-electrolyte interphase(CEI)on NNZMTO surface,which can stabilize the NNZMTO-electrolyte interface to prevent TM dissolution,surface structure transformation,and micro-crack generation.Combination studies of in situ and ex situ characterizations and theoretical calculations were used to elucidate the storage mechanism of NNZMTO with Li PO_(2)F_(2)additive.As a result,the NNZMTO displays outstanding capacity retention of 94.44%after 500 cycles at 1C with 0.3 wt%Li PO_(2)F_(2),excellent rate performance of 92.5 mA h g^(-1)at 8C with 0.1 wt%Li PO_(2)F_(2),and remarkable full cell capability.This work highlights the important role of manipulating Na occupation and constructing protective film in the design of layered materials,which provides a promising direction for developing high-performance cathodes for SIBs.
文摘To obtain human sodium/iodide symporter gene cDNA for studying its potential ability as a radioiodide treatment for melanoma, the hNIS gene cDNA was amplified with total RNA from human thyroid tissue by RT-PCR. The hNIS cDNA was inserted into cloning vector pUCm-T and subcloned into eukaryotic expression vector pc-DNA3. The pc-DNA3-hNIS and pc-DNA3 were transduced into melanoma cells (B16) by electroporation, and two cell lines termed B16-A and B16-B respectively were established. The uptake and efflux of iodide was examined in vitro. The three cell lines (B16-A, B16-B, B16) were injected subcutaneously into the right flank of C57 mice. Biodistribution study and tumor imaging were performed when the tumor reached approximately 10mm in diameter. The cloned hNIS cDNA sequence was identical with the published sequence. Two novel cell lines named 16-A containing pc-DNA3-hNIS and B16-B containing pc-DNA3 only were established. The resultant cell line B16-A accumulated 17 and 19 times more radioiodide in vitro than B16 and B16-B respectively. The iodide uptake reached the half-maximal level within 10 min, and reached a plateau at 30 min. The efflux of iodide was also rapid (T1/2eff=10min). The imaging shows in vivo uptake in expected sites including the salivary glands, thyroid, stomach, and hNIS-transduced tumor, whereas the nontransduced tumor was not visualized. The %ID/g of B16-A tumors at 1, 2, 4, 12, and 24h after injec- tion of 125I were 12.22±0.71, 10.91±0.72, 8.73±0.99, 1.24±0.29, and 0.19±0.03, respectively, which were signifi- cantly higher percentages than those for controlling tumors, p<0.01. However, biologic T1/2 was about 6 h. Our pre- liminary data indicate that the transduction of the hNIS gene per se is sufficient to induce iodide transport in mela- noma cells both in vitro and in vivo, but T1/2eff is short.