以C H 3C O O N a,N i( C H 3C O O )2 ,4 H 20 和M n ( C H 3C O O )2 ,4 H 20 为原料,经过溶解、干燥和焙烧,得到产物N a ( N i0.5M n 0.5) 0 4 . 利用X R D ,S E M 对材料进行了结构和形貌的分析,结果显示产物含有少量的N iO ...以C H 3C O O N a,N i( C H 3C O O )2 ,4 H 20 和M n ( C H 3C O O )2 ,4 H 20 为原料,经过溶解、干燥和焙烧,得到产物N a ( N i0.5M n 0.5) 0 4 . 利用X R D ,S E M 对材料进行了结构和形貌的分析,结果显示产物含有少量的N iO 相,呈片状形貌,颗粒小于5μm ,有一定程度的团聚. 对材料进行了不同倍率的充放电性能测试,产物展示了较好的电化学性能,0. 1 ,0 . 2 , 0 . 5 ,1 和5 倍率时的放电容量分别为1 24,1 21,1 1 6 .7 ,110. 1 和7 3 .8 m A . h /g .产物在2. 0 - 4. 0 V 电压区间充放电循环3 0 次后,室温和55 t 下的容量保持率分别为94. 8 % 和91. 1% ,显示具有较好的髙温性能,可以作为钠离子电池正极材料.展开更多
通过简单的溶胶-凝胶辅助静电纺丝法得到(113)晶面优势导向的Na_3V_2(PO_4)_3/C钠离子电池正极材料,并通过对比最佳纺丝条件下分别用聚乙烯吡咯烷酮(PVP)和聚氧化乙烯(PEO)作为晶面导向剂制备的两种Na_3V_2(PO_4)_3电极材料的电化学性能...通过简单的溶胶-凝胶辅助静电纺丝法得到(113)晶面优势导向的Na_3V_2(PO_4)_3/C钠离子电池正极材料,并通过对比最佳纺丝条件下分别用聚乙烯吡咯烷酮(PVP)和聚氧化乙烯(PEO)作为晶面导向剂制备的两种Na_3V_2(PO_4)_3电极材料的电化学性能,证明静电纺丝有利于实现Na_3V_2(PO_4)_3(113)晶面择优取向。在相同的电流密度(0.1 C)下,NVP-PVP和NVP-PEO的首周放电比容量分别为112.5 m A·h/g和96.3 m A·h/g,电池循环50周后,NVP-PVP仍然有98.1 m A·h/g的可逆容量保持,NVP-PEO仅仅只剩下34 m A·h/g的可逆容量保持,而即使循环100周后,NVP-PVP的可逆容量仍然在88.2 m A·h/g。结果表明,PVP静电纺丝有利于构建特定的纳米纤维结构和均一的导电碳网络骨架,进而提升主体材料Na_3V_2(PO_4)_3的电化学性能。展开更多
用溶胶凝胶法合成了Na+离子掺杂的Li_(1-x)Na_xMn_2O_4(x=0,0.01,0.03,0.05)。X射线衍射图表明Na+取代Li+进入Li_(1-x)Na_xMn_2O_4晶格中,扫描电镜图看出产物是粒径为100~300 nm的颗粒。恒流充放电测试结果表明,Li_(0.97)Na_(0.03)Mn_2...用溶胶凝胶法合成了Na+离子掺杂的Li_(1-x)Na_xMn_2O_4(x=0,0.01,0.03,0.05)。X射线衍射图表明Na+取代Li+进入Li_(1-x)Na_xMn_2O_4晶格中,扫描电镜图看出产物是粒径为100~300 nm的颗粒。恒流充放电测试结果表明,Li_(0.97)Na_(0.03)Mn_2O_4在2C倍率下循环100圈后放电容量保持率比未掺杂的LiMn_2O_4从51.2%提升到84.1%。循环伏安测试表明Na+离子掺杂降低了材料极化且增大了锂离子扩散系数。10C倍率下Li0.97Na0.03Mn2O4仍有79.0 m Ah·g-1的放电容量,高于未掺杂样品的52.1 m Ah·g^(-1)。Na+离子掺杂可以稳定材料结构并提高锂离子扩散系数,从而提高LiMn_2O_4的电化学性能,是一种可行的改性方法。展开更多
首次采用溶胶-凝胶法制备Na2MnSiO4/C纳米复合正极材料.X射线衍射(XRD)和Rietveld结构精修结果表明,合成的Na2MnSiO4材料为单斜晶系、Pn空间群.红外光谱(FTIR)结果证实材料中不含有Na2SiO3和SiO2等杂质.电化学测试结果表明,该材料在...首次采用溶胶-凝胶法制备Na2MnSiO4/C纳米复合正极材料.X射线衍射(XRD)和Rietveld结构精修结果表明,合成的Na2MnSiO4材料为单斜晶系、Pn空间群.红外光谱(FTIR)结果证实材料中不含有Na2SiO3和SiO2等杂质.电化学测试结果表明,该材料在1 mol·L-1NaClO4/PC电解液中,电流密度为14 m A·g-1、电压范围为1.5~4.2V(vs.Na+/Na)测试条件下,其首次可逆放电比容量高达113 m Ah·g-1.展开更多
作为锂离子电池的理想替代品,钠离子电池因具有能源储备丰富、成本低廉等优点而受到人们的广泛关注。柔性便携式电子产品的发展亟需柔性储能器件的研制。因此,发展一种廉价、高性能的柔性钠离子电池负极材料成了科研工作者的共同目标。...作为锂离子电池的理想替代品,钠离子电池因具有能源储备丰富、成本低廉等优点而受到人们的广泛关注。柔性便携式电子产品的发展亟需柔性储能器件的研制。因此,发展一种廉价、高性能的柔性钠离子电池负极材料成了科研工作者的共同目标。在此项工作中,我们通过简单的水热合成和热还原法发展了一种以柔性碳布为基底,与缺氧型的Na_2Ti_3O_7纳米带(NTO)构成三维阵列结构的新型柔性钠离子电池负极材料。复合材料(R-NTO/CC)的导电性和活性位点得到提高,电化学性能也大幅提升,在200 m A·cm^(-2)的电流密度下,实现100 m Ah·cm^(-2)的面积比容量,且经过200次循环后仍保留最初电容值的80%。此外,这种电极还具有优良的倍率性能,当电流密度提高到400 m A·cm^(-2)时,仍保持69.7m Ah·cm^(-2)的面积比容量,是未引入氧空位材料的三倍之多。这种三维缺氧的电极材料可有效提高载流子浓度,缩短离子传输通道,从而大幅提升电极的电化学性能。此工作为设计合成高储钠性能的新型的负极材料提供了一种实用有效的策略。展开更多
文摘以C H 3C O O N a,N i( C H 3C O O )2 ,4 H 20 和M n ( C H 3C O O )2 ,4 H 20 为原料,经过溶解、干燥和焙烧,得到产物N a ( N i0.5M n 0.5) 0 4 . 利用X R D ,S E M 对材料进行了结构和形貌的分析,结果显示产物含有少量的N iO 相,呈片状形貌,颗粒小于5μm ,有一定程度的团聚. 对材料进行了不同倍率的充放电性能测试,产物展示了较好的电化学性能,0. 1 ,0 . 2 , 0 . 5 ,1 和5 倍率时的放电容量分别为1 24,1 21,1 1 6 .7 ,110. 1 和7 3 .8 m A . h /g .产物在2. 0 - 4. 0 V 电压区间充放电循环3 0 次后,室温和55 t 下的容量保持率分别为94. 8 % 和91. 1% ,显示具有较好的髙温性能,可以作为钠离子电池正极材料.
文摘通过简单的溶胶-凝胶辅助静电纺丝法得到(113)晶面优势导向的Na_3V_2(PO_4)_3/C钠离子电池正极材料,并通过对比最佳纺丝条件下分别用聚乙烯吡咯烷酮(PVP)和聚氧化乙烯(PEO)作为晶面导向剂制备的两种Na_3V_2(PO_4)_3电极材料的电化学性能,证明静电纺丝有利于实现Na_3V_2(PO_4)_3(113)晶面择优取向。在相同的电流密度(0.1 C)下,NVP-PVP和NVP-PEO的首周放电比容量分别为112.5 m A·h/g和96.3 m A·h/g,电池循环50周后,NVP-PVP仍然有98.1 m A·h/g的可逆容量保持,NVP-PEO仅仅只剩下34 m A·h/g的可逆容量保持,而即使循环100周后,NVP-PVP的可逆容量仍然在88.2 m A·h/g。结果表明,PVP静电纺丝有利于构建特定的纳米纤维结构和均一的导电碳网络骨架,进而提升主体材料Na_3V_2(PO_4)_3的电化学性能。
文摘用溶胶凝胶法合成了Na+离子掺杂的Li_(1-x)Na_xMn_2O_4(x=0,0.01,0.03,0.05)。X射线衍射图表明Na+取代Li+进入Li_(1-x)Na_xMn_2O_4晶格中,扫描电镜图看出产物是粒径为100~300 nm的颗粒。恒流充放电测试结果表明,Li_(0.97)Na_(0.03)Mn_2O_4在2C倍率下循环100圈后放电容量保持率比未掺杂的LiMn_2O_4从51.2%提升到84.1%。循环伏安测试表明Na+离子掺杂降低了材料极化且增大了锂离子扩散系数。10C倍率下Li0.97Na0.03Mn2O4仍有79.0 m Ah·g-1的放电容量,高于未掺杂样品的52.1 m Ah·g^(-1)。Na+离子掺杂可以稳定材料结构并提高锂离子扩散系数,从而提高LiMn_2O_4的电化学性能,是一种可行的改性方法。
基金supported by the National Natural Science Foundation of China(61071040)Leading Academic Discipline Project of Shanghai Municipal Education Commission,China(J50102)Research and Innovation Project of Shanghai Municipal Education Commission,China~~
文摘首次采用溶胶-凝胶法制备Na2MnSiO4/C纳米复合正极材料.X射线衍射(XRD)和Rietveld结构精修结果表明,合成的Na2MnSiO4材料为单斜晶系、Pn空间群.红外光谱(FTIR)结果证实材料中不含有Na2SiO3和SiO2等杂质.电化学测试结果表明,该材料在1 mol·L-1NaClO4/PC电解液中,电流密度为14 m A·g-1、电压范围为1.5~4.2V(vs.Na+/Na)测试条件下,其首次可逆放电比容量高达113 m Ah·g-1.
文摘作为锂离子电池的理想替代品,钠离子电池因具有能源储备丰富、成本低廉等优点而受到人们的广泛关注。柔性便携式电子产品的发展亟需柔性储能器件的研制。因此,发展一种廉价、高性能的柔性钠离子电池负极材料成了科研工作者的共同目标。在此项工作中,我们通过简单的水热合成和热还原法发展了一种以柔性碳布为基底,与缺氧型的Na_2Ti_3O_7纳米带(NTO)构成三维阵列结构的新型柔性钠离子电池负极材料。复合材料(R-NTO/CC)的导电性和活性位点得到提高,电化学性能也大幅提升,在200 m A·cm^(-2)的电流密度下,实现100 m Ah·cm^(-2)的面积比容量,且经过200次循环后仍保留最初电容值的80%。此外,这种电极还具有优良的倍率性能,当电流密度提高到400 m A·cm^(-2)时,仍保持69.7m Ah·cm^(-2)的面积比容量,是未引入氧空位材料的三倍之多。这种三维缺氧的电极材料可有效提高载流子浓度,缩短离子传输通道,从而大幅提升电极的电化学性能。此工作为设计合成高储钠性能的新型的负极材料提供了一种实用有效的策略。