Sol--gol method was employed to synthesize Mg doped ZnO films on Si substrates. The annealing temperature-dependent structure and optical property of the produced samples were studied. An interesting result observed i...Sol--gol method was employed to synthesize Mg doped ZnO films on Si substrates. The annealing temperature-dependent structure and optical property of the produced samples were studied. An interesting result observed is that increasing Mg concentration in the studied samples induces the full width at half maximum (FWHM) of their near-band-edge (NBE) emission decrease and the defect related emission of the corresponding sample suppresses drastically. The possible mechanism of the observed result is discussed.展开更多
Nitrogen-doped single-walled carbon nanotubes (CNx-SWNTs) with tunable dopant concentrations were synthesized by chemical vapor deposition (CVD), and their structure and elemental composition were characterized by...Nitrogen-doped single-walled carbon nanotubes (CNx-SWNTs) with tunable dopant concentrations were synthesized by chemical vapor deposition (CVD), and their structure and elemental composition were characterized by using transmission electron microscopy (TEM) in combination with electron energy loss spectroscopy (EELS). By comparing the Raman spectra of pristine and doped nanotubes, we observed the doping-induced Raman G band phonon stiffening and 2D band phonon softening, both of which reflect doping-induced renormalization of the electron and phonon energies in the nan- otubes and behave as expected in accord with the n-type doping effect. On the basis of first principles calculations of the distribution of delocalized carrier density in both the pristine and doped nanotubes, we show how the n-type doping occurs when nitrogen heteroatoms are substitutionally incorporated into the honeycomb tube-shell carbon lattice.展开更多
Pristine LiNi0.5Mn1.5O4and Na-doped Li0.95Na0.05Ni0.5Mn1.5O4cathode materials were synthesized by a simple solid-statemethod.The effects of Na+doping on the crystalline structure and electrochemical performance of LiN...Pristine LiNi0.5Mn1.5O4and Na-doped Li0.95Na0.05Ni0.5Mn1.5O4cathode materials were synthesized by a simple solid-statemethod.The effects of Na+doping on the crystalline structure and electrochemical performance of LiNi0.5Mn1.5O4cathode materialwere systematically investigated.The samples were characterized by XRD,SEM,FT-IR,CV,EIS and galvanostatic charge/dischargetests.It is found that both pristine and Na-doped samples exhibit secondary agglomerates composed of well-defined octahedralprimary particle,but Na+doping decreases the primary particle size to certain extent.Na+doping can effectively inhibit the formationof LixNi1-xO impurity phase,enhance the Ni/Mn disordering degree,decrease the charge-transfer resistance and accelerate the lithiumion diffusion,which are conductive to the rate capability.However,the doped Na+ions tend to occupy8a Li sites,which forces equalamounts of Li+ions to occupy16d octahedral sites,making the spinel framework less stable,therefore the cycling stability is notimproved obviously after Na+doping.展开更多
Monometallic doping has proved its superiority in improving either permselectivity or H_(2) permeability of organosilica membranes for H_(2)/CO_(2) separation,but it is still challenging to break the trade-off effect....Monometallic doping has proved its superiority in improving either permselectivity or H_(2) permeability of organosilica membranes for H_(2)/CO_(2) separation,but it is still challenging to break the trade-off effect.Herein,we report a series of Pd-Nb bimetallic doped 1,2-bis(triethoxysilyl)ethane(Pd-Nb-BTESE,PNB)membranes with different metal doping routes for simultaneously improving H_(2) permeance and H_(2)/CO_(2) permselectivity by the synergetic effects of Pd and Nb.The doped Pd can exist in the BTESE network as nanoparticles while the doped Nb is incorporated into BTESE network forming Nb-O-Si covalent bonds.The metal doping routes significantly influence the microstructure of PNB networks and gas separation performance of the PNB membranes.We found that the PNB membrane with Pd doping priority(PNB-Pd)exhibited the highest surface area and pore volume,comparing with Nb doping priority(PNB-Nb)or Pd-Nb simultaneous doping(PNB-PdNb).The PNB-Pd membrane could not only exhibit an excellent H_(2) permeance of~10^(−6) mol·m^(−2)·s^(−1)·Pa^(−1) but also a high H_(2)/CO_(2) permselectivity of 17.2.Our findings may provide novel insights into preparation of bimetallic doped organosilica membranes with excellent H_(2)/CO_(2) separation performance.展开更多
The search for non-precious and efficient electrocatalysts towards the oxygen evolution reaction(OER)is of vital importance for the future advancement of multifarious renewable energy conversion/storage technologies.E...The search for non-precious and efficient electrocatalysts towards the oxygen evolution reaction(OER)is of vital importance for the future advancement of multifarious renewable energy conversion/storage technologies.Electronic modulation via heteroatom doping is recognized as one of the most forceful leverages to enhance the electrocatalytic activity.Herein,we demonstrate a delicate strategy for the in-situ confinement of S-doped Ni O nanoparticles into N-doped carbon nanotube/nanofiber-coupled hierarchical branched superstructures(labeled as S-Ni O@N-C NT/NFs).The developed strategy simultaneously combines enhanced thermodynamics via electronic regulation with accelerated kinetics via nanoarchitectonics.The S-doping into Ni O lattice and the 1 D/1 D-integrated hierarchical branched carbon substrate confer the resultant S-Ni O@N-C NT/NFs with regulated electronic configuration,enriched oxygen vacancies,convenient mass diffusion pathways and superior architectural robustness.Thereby,the SNi O@N-C NT/NFs display outstanding OER properties with an overpotential of 277 m V at 10 m A cm^(-2)and impressive long-term durability in KOH medium.Density functional theory(DFT)calculations further corroborate that introducing S-dopant significantly enhances the interaction with key oxygenate intermediates and narrow the band gap.More encouragingly,a rechargeable Zn-air battery using an air-cathode of Pt/C+S-Ni O@N-C NT/NFs exhibits a lower charge voltage and preferable cycling stability in comparison with the commercial Pt/C+Ru O_(2)counterpart.This study highlighting the concurrent consideration of electronic regulation,architectural design and nanocarbon hybridization may shed light on the future exploration of economical and efficient electrocatalysts.展开更多
A novel method for preparing Ta-doped Ti02 via using Ta2 05 as the doping source is proposed. The preparation process combines the hydrothernlal fluorination of Ta2O5 and the subsequent formation of Ta-doped TiO2 sol....A novel method for preparing Ta-doped Ti02 via using Ta2 05 as the doping source is proposed. The preparation process combines the hydrothernlal fluorination of Ta2O5 and the subsequent formation of Ta-doped TiO2 sol. The results show that the doped sample annealed at 393 K generates an unstable intermediate NH4 TiOF3, which converts into anatase TiO2 with the increase of temperature. After annealing at ≥673K, the Ta-doped TiO2 nanocrystals with the grain size 〈20nm are obtained. Both the XRD and TG-DSC results confirm that Ta doping prevents the anatase-rutile crystal transition of TiO2. The band gap values of the doped samples, as obtained by UV-vis diffuse reflectance spectra, are smaller than that of pure anatase TiO2. The first-principle pseudopotential method calculations indicate that Ta5+ lies in the TiO2 lattice at the interstitial position.展开更多
Fe/N/C catalysts,synthesized through the pyrolysis of Fe-doped metal–organic framework (MOF) precursors,have attracted extensive attention owing to their promising oxygen reduction reaction (ORR) catalytic activity i...Fe/N/C catalysts,synthesized through the pyrolysis of Fe-doped metal–organic framework (MOF) precursors,have attracted extensive attention owing to their promising oxygen reduction reaction (ORR) catalytic activity in fuel cells and/or metal-air batteries.However,post-treatments (acid washing,second pyrolysis,and so on) are unavoidable to improve ORR catalytic activity and stability.The method for introducing Fe^(3+) sources (anhydrous Fe Cl_(3)) into the MOF structure,in particular,is a critical step that can avoid time-consuming post-treatments and result in more exposed Fe-N_(x) active sites.Herein,three different Fe doping strategies were systematically investigated to explore their influence on the types of active sites formed and ORR performance.Fe-NC(Zn^(2+)),synthesized by one-step pyrolysis of Fe doped ZIF-8 (Zn^(2+)) precursor which was obtained by adding the anhydrous Fe Cl_(3)source into the Zn(NO_(3))_(2)·6H_(2)O/methanol solution before mixing,possessed the highest Fe-N_(x)active sites due to the high-efficiency substitution of Zn^(2+)ions with Fe^(3+) ions during ZIF-8 growth,the strong interaction between Fe^(3+) ions and N atoms of 2-Methylimidazole (2-MIm),and ZIF-8’s micropore confinement effect.As a result,Fe-NC(Zn^(2+)) presented high ORR activity in the entire p H range (p H=1,7,and 13).At p H=13,Fe-NC(Zn^(2+)) exhibited a half-wave potential (E1/2) of 0.95 V (vs.reversible hydrogen electrode),which was 70 m V higher than that of commercial Pt/C.More importantly,Fe-NC(Zn^(2+)) showed superior ORR stability in neutral media without performance loss after 5,000 cycles.A record-high open-circuit voltage(1.9 V) was obtained when Fe-NC(Zn^(2+)) was used as a cathodic catalyst in assembled Mg-air batteries in neutral media.The assembled liquid and all-solid Mg-air batteries with high performance indicated that Fe-NC(Zn^(2+)) has enormous potential for use in flexible and wearable Mg-air batteries.展开更多
Gd- or Lu-doped long afterglow red phosphor Y2O2S:Sm^3+ was synthesized using the high temperature flux fusion method. The obtained phosphors were analyzed using X-ray diffraction to determine the crystal structure,...Gd- or Lu-doped long afterglow red phosphor Y2O2S:Sm^3+ was synthesized using the high temperature flux fusion method. The obtained phosphors were analyzed using X-ray diffraction to determine the crystal structure, and the phase analyses show that the product is in single phase. The luminescence spectra and decay curve were measured on a Hitachi F-4500 fluorescence spectrophotometer. The decay time was determined on an ST-900PM weak light photometer. The analyses show that host doping of Lu improves both luminescence and decay time of the materials. The concentration of doped Lu and Sm was varied in order to determine the optimal condition and to synthesize the product with the best properties. The mechanism of the long afterglow was also briefly discussed.展开更多
Graphitic carbon nitride(g-C_(3)N_(4))has been extensively doped with alkali metals to enlarge photocatalytic output,in which cesium(Cs)doping is predicted to be the most efficient.Nevertheless,the sluggish diffusion ...Graphitic carbon nitride(g-C_(3)N_(4))has been extensively doped with alkali metals to enlarge photocatalytic output,in which cesium(Cs)doping is predicted to be the most efficient.Nevertheless,the sluggish diffusion and doping kinetics of precursors with high melting points,along with imprecise regulation,have raised the debate on whether Cs doping could make sense.For this matter,we attempt to confirm the positive effects of Cs doping on multifunctional photocatalysis by first using cesium acetate with the character of easy manipulation.The optimized Csdoped g-C_(3)N_(4)(CCN)shows a 41.6-fold increase in visible-light-driven hydrogen evolution reaction(HER)compared to pure g-C_(3)N_(4) and impressive degradation capability,especially with 77%refractory tetracycline and almost 100%rhodamine B degradedwithin an hour.The penetration ofCs+is demonstrated to be a mode of interlayer doping,and Cs–N bonds(especially with sp^(2) pyridine N in C═N–C),along with robust chemical interaction and electron exchange,are fabricated.This atomic configuration triggers the broadened spectral response,the improved charge migration,and the activated photocatalytic capacity.Furthermore,we evaluate the CCN/cadmium sulfide hybrid as a Z-scheme configuration,promoting the visible HER yield to 9.02 mmol g^(−1) h^(−1),which is the highest ever reported among all CCN systems.This work adds to the rapidly expanding field of manipulation strategies and supports further development of mediating served for photocatalysis.展开更多
We study in this paper the intersubband optical absorption of Si doped GaAs layer for different applied electric fields and donors concentration. The electronic structure has been calculated by solving the Schr?dinger...We study in this paper the intersubband optical absorption of Si doped GaAs layer for different applied electric fields and donors concentration. The electronic structure has been calculated by solving the Schr?dinger and Poisson equations self-consistently. From our results, it is clear that the subband energies and intersubband optical absorption are quite sensitive to the applied electric field. Also our results indicate that the optical absorption depends not only on the electric field but also on the donor’s concentration. The results of this work should provide useful guidance for the design of optically pumped quantum well lasers and quantum well infrared photo detectors (QWIPs).展开更多
Soil salinity is a big environmental issue affecting crop production.Although seed nanopriming has been widely used to improve seed germination and seedling growth under salinity,our knowledge about the underlying mec...Soil salinity is a big environmental issue affecting crop production.Although seed nanopriming has been widely used to improve seed germination and seedling growth under salinity,our knowledge about the underlying mechanisms is still insufficient.Herein,we newly synthesized selenium-doped carbon dots nanoparticles coated with poly acrylic acid(poly acrylic acid coated selenium doped carbon dots,PAA@Se-CDs)and used it to prime seeds of rapeseeds.The TEM(transmission electron microscope)size and zeta potential of PAA@Se-CDs are 3.8±0.2 nm and-30 mV,respectively.After 8 h priming,the PAA@Se-CDs nanoparticles were detected in the seed compartments(seed coat,cotyledon,and radicle),while no such signals were detected in the NNP(no nanoparticle control)group(SeO_2 was used as the NNP).Nanopriming with PAA@Se-CDs nanoparticles increased rapeseeds germination(20%)and seedling fresh weight(161%)under saline conditions compared to NNP control.PAA@Se-CDs nanopriming significantly enhanced endo-β-mannanase activities(255%increase,21.55μmol h^(-1)g^(-1)vs.6.06μmol h^(-1)g^(-1),at DAS 1(DAS,days after sowing)),total soluble sugar(33.63 mg g^(-1)FW(fresh weight)vs.20.23 mg g^(-1)FW)and protein contents(1.96μg g^(-1)FW vs.1.0μg g^(-1)FW)to support the growth of germinating seedlings of rapeseeds under salt stress,in comparison with NNP co ntrol.The respiration rate and ATP content were increased by 76%and 607%,respectively.The oxidative damage of salinity due to the overaccumulation of reactive oxygen species(ROS)was alleviated by PAA@Se-CDs nanopriming by increasing the antioxidant enzyme activities(SOD(superoxide dismutase),POD(peroxidase),and CAT(catalase)).Another mechanism behind PAA@Se-CDs nanopriming improving rapeseeds salt tolerance at seedling stage was reducing sodium(Na^(+))accumulation and improving potassium(K^(+))retention,hence increasing the K^(+)/Na^(+)ratio under saline conditions.Overall,our results not only showed that seed nanopriming with PAA@Se-CDs could be a good approach to improve salt tolerance,but also add more knowledge to the mechanism behind nanopriming-improved plant salt tolerance at germination and early seedling growth stage.展开更多
Na^(+)/K^(+)-ATPase is a transmembrane protein that has important roles in the maintenance of electrochemical gradients across cell membranes by transporting three Na^(+)out of and two K^(+)into cells.Additionally,Na^...Na^(+)/K^(+)-ATPase is a transmembrane protein that has important roles in the maintenance of electrochemical gradients across cell membranes by transporting three Na^(+)out of and two K^(+)into cells.Additionally,Na^(+)/K^(+)-ATPase participates in Ca^(2+)-signaling transduction and neurotransmitter release by coordinating the ion concentration gradient across the cell membrane.Na^(+)/K^(+)-ATPase works synergistically with multiple ion channels in the cell membrane to form a dynamic network of ion homeostatic regulation and affects cellular communication by regulating chemical signals and the ion balance among different types of cells.Therefo re,it is not surprising that Na^(+)/K^(+)-ATPase dysfunction has emerged as a risk factor for a variety of neurological diseases.However,published studies have so far only elucidated the important roles of Na^(+)/K^(+)-ATPase dysfunction in disease development,and we are lacking detailed mechanisms to clarify how Na^(+)/K^(+)-ATPase affects cell function.Our recent studies revealed that membrane loss of Na^(+)/K^(+)-ATPase is a key mechanism in many neurological disorders,particularly stroke and Parkinson's disease.Stabilization of plasma membrane Na^(+)/K^(+)-ATPase with an antibody is a novel strategy to treat these diseases.For this reason,Na^(+)/K^(+)-ATPase acts not only as a simple ion pump but also as a sensor/regulator or cytoprotective protein,participating in signal transduction such as neuronal autophagy and apoptosis,and glial cell migration.Thus,the present review attempts to summarize the novel biological functions of Na^(+)/K^(+)-ATPase and Na^(+)/K^(+)-ATPase-related pathogenesis.The potential for novel strategies to treat Na^(+)/K^(+)-ATPase-related brain diseases will also be discussed.展开更多
The electronic structures and optical properties of intrinsic β-Ga2O3 and Zn-dopedβ-Ga2O3 are investigated by first-principles calculations. The analysis about the thermal stability shows that Zn-doped β-Ga2O3 rema...The electronic structures and optical properties of intrinsic β-Ga2O3 and Zn-dopedβ-Ga2O3 are investigated by first-principles calculations. The analysis about the thermal stability shows that Zn-doped β-Ga2O3 remains stable. The Zn doping does not change the basic electronic structure of β-Ga2O3, but only generates an empty energy level above the maximum of the valence band, which is shallow enough to make the Zn-doped β-Ga2O3 a typical p-type semiconductor. Because of Zn doping, absorption and reflectivity are enhanced in the near infrared region. The higher absorption and reflectivity of ZnGa(2) than those of ZnGa(1) are due to more empty energy states of ZnGa(2) than those of ZnGa(1) near Ef in the near infrared region.展开更多
Electrocatalytic hydrogen production from seawater holds enormous promise for clean energy generation.Nevertheless,the direct electrolysis of seawater encounters significant challenges due to poor anodic stability cau...Electrocatalytic hydrogen production from seawater holds enormous promise for clean energy generation.Nevertheless,the direct electrolysis of seawater encounters significant challenges due to poor anodic stability caused by detrimental chlorine chemistry.Herein,we present our recent discovery that the incorporation of Ce into Ni Fe layered double hydroxide nanosheet array on Ni foam(Ce-Ni Fe LDH/NF)emerges as a robust electrocatalyst for seawater oxidation.During the seawater oxidation process,CeO_(2)is generated,effectively repelling Cl^(-)and inhibiting the formation of Cl O-,resulting in a notable enhancement in the oxidation activity and stability of alkaline seawater.The prepared Ce-Ni Fe LDH/NF requires only overpotential of 390 m V to achieve the current density of 1 A cm^(-2),while maintaining long-term stability for 500 h,outperforming the performance of Ni Fe LDH/NF(430 m V,150 h)by a significant margin.This study highlights the effectiveness of a Ce-doping strategy in augmenting the activity and stability of materials based on Ni Fe LDH in seawater electrolysis for oxygen evolution.展开更多
ZnO single crystals were grown by vapor phase reaction of Zno powder with active carbon powdei at an elevated temperature The typical crystals were colorless and transparent with maximum size o4 0.1 mm in diameter and...ZnO single crystals were grown by vapor phase reaction of Zno powder with active carbon powdei at an elevated temperature The typical crystals were colorless and transparent with maximum size o4 0.1 mm in diameter and 25 mm in length, The gas-sensing characteristics of Na+-doped anc undoped single crystals were investigated in 1 %H2. Co and CH, in air between 1 50 and 600℃. It was found that the undoped ZnO single crystals showed little gas sensitivity in air. and Na+-doping can greatly enhance the senstivity by increasing the resistivities. The maximum sensitivity of the samples is 22 (Ra/ Rg) for H2. 1 2 for CO and 4 for CH4展开更多
Josephson junction plays a key role not only in studying the basic physics of unconventional iron-based superconductors but also in realizing practical application of thin-film based devices,therefore the preparation ...Josephson junction plays a key role not only in studying the basic physics of unconventional iron-based superconductors but also in realizing practical application of thin-film based devices,therefore the preparation of high-quality iron pnictide Josephson junctions is of great importance.In this work,we have successfully fabricated Josephson junctions from Co-doped BaFe_(2)As_(2)thin films using a direct junction fabrication technique which utilizes high energy focused helium ion beam(FHIB).The electrical transport properties were investigated for junctions fabricated with various He^(+)irradiation doses.The junctions show sharp superconducting transition around 24 K with a narrow transition width of 2.5 K,and a dose correlated foot-structure resistance which corresponds to the effective tuning of junction properties by He^(+)irradiation.Significant J_c suppression by more than two orders of magnitude can be achieved by increasing the He^(+)irradiation dose,which is advantageous for the realization of low noise ion pnictide thin film devices.Clear Shapiro steps are observed under 10 GHz microwave irradiation.The above results demonstrate the successful fabrication of high quality and controllable Co-doped BaFe_(2)As_(2)Josephson junction with high reproducibility using the FHIB technique,laying the foundation for future investigating the mechanism of iron-based superconductors,and also the further implementation in various superconducting electronic devices.展开更多
文摘Sol--gol method was employed to synthesize Mg doped ZnO films on Si substrates. The annealing temperature-dependent structure and optical property of the produced samples were studied. An interesting result observed is that increasing Mg concentration in the studied samples induces the full width at half maximum (FWHM) of their near-band-edge (NBE) emission decrease and the defect related emission of the corresponding sample suppresses drastically. The possible mechanism of the observed result is discussed.
基金supported by the National Natural Science Foundation of China(Grant Nos.11004230,51172273,11290161,and 11027402)the National Key Basic Research Program of China(Grant Nos.2012CB933003 and 2013CB932603)the Innovative Project of the Chinese Academy of Sciences(GrantNo.KJCX2-YW-W35)
文摘Nitrogen-doped single-walled carbon nanotubes (CNx-SWNTs) with tunable dopant concentrations were synthesized by chemical vapor deposition (CVD), and their structure and elemental composition were characterized by using transmission electron microscopy (TEM) in combination with electron energy loss spectroscopy (EELS). By comparing the Raman spectra of pristine and doped nanotubes, we observed the doping-induced Raman G band phonon stiffening and 2D band phonon softening, both of which reflect doping-induced renormalization of the electron and phonon energies in the nan- otubes and behave as expected in accord with the n-type doping effect. On the basis of first principles calculations of the distribution of delocalized carrier density in both the pristine and doped nanotubes, we show how the n-type doping occurs when nitrogen heteroatoms are substitutionally incorporated into the honeycomb tube-shell carbon lattice.
基金Project(E2015202356)supported by the Natural Science Foundation of Hebei Province,ChinaProject(2013009)supported by the Technology Innovation Foundation for Outstanding Youth of Hebei University,China
文摘Pristine LiNi0.5Mn1.5O4and Na-doped Li0.95Na0.05Ni0.5Mn1.5O4cathode materials were synthesized by a simple solid-statemethod.The effects of Na+doping on the crystalline structure and electrochemical performance of LiNi0.5Mn1.5O4cathode materialwere systematically investigated.The samples were characterized by XRD,SEM,FT-IR,CV,EIS and galvanostatic charge/dischargetests.It is found that both pristine and Na-doped samples exhibit secondary agglomerates composed of well-defined octahedralprimary particle,but Na+doping decreases the primary particle size to certain extent.Na+doping can effectively inhibit the formationof LixNi1-xO impurity phase,enhance the Ni/Mn disordering degree,decrease the charge-transfer resistance and accelerate the lithiumion diffusion,which are conductive to the rate capability.However,the doped Na+ions tend to occupy8a Li sites,which forces equalamounts of Li+ions to occupy16d octahedral sites,making the spinel framework less stable,therefore the cycling stability is notimproved obviously after Na+doping.
基金supported by the National Natural Science Foundation of China(21490581)China Petroleum&Chemical Corporation(317008-6)Guangxi Innovation Driven Development Foundation(AA17204092).
文摘Monometallic doping has proved its superiority in improving either permselectivity or H_(2) permeability of organosilica membranes for H_(2)/CO_(2) separation,but it is still challenging to break the trade-off effect.Herein,we report a series of Pd-Nb bimetallic doped 1,2-bis(triethoxysilyl)ethane(Pd-Nb-BTESE,PNB)membranes with different metal doping routes for simultaneously improving H_(2) permeance and H_(2)/CO_(2) permselectivity by the synergetic effects of Pd and Nb.The doped Pd can exist in the BTESE network as nanoparticles while the doped Nb is incorporated into BTESE network forming Nb-O-Si covalent bonds.The metal doping routes significantly influence the microstructure of PNB networks and gas separation performance of the PNB membranes.We found that the PNB membrane with Pd doping priority(PNB-Pd)exhibited the highest surface area and pore volume,comparing with Nb doping priority(PNB-Nb)or Pd-Nb simultaneous doping(PNB-PdNb).The PNB-Pd membrane could not only exhibit an excellent H_(2) permeance of~10^(−6) mol·m^(−2)·s^(−1)·Pa^(−1) but also a high H_(2)/CO_(2) permselectivity of 17.2.Our findings may provide novel insights into preparation of bimetallic doped organosilica membranes with excellent H_(2)/CO_(2) separation performance.
基金financially supported by the National Natural Science Foundation of China(21972068,21875112,22072067,21878047,22075290 and 21676056)the Qing Lan Project of Jiangsu Province(1107040167)+3 种基金the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX20_0121)the China Scholarship Council(CSC,202006090294)the Fundamental Research Funds for the Central Universities(3207042101D)A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)(1107047002)。
文摘The search for non-precious and efficient electrocatalysts towards the oxygen evolution reaction(OER)is of vital importance for the future advancement of multifarious renewable energy conversion/storage technologies.Electronic modulation via heteroatom doping is recognized as one of the most forceful leverages to enhance the electrocatalytic activity.Herein,we demonstrate a delicate strategy for the in-situ confinement of S-doped Ni O nanoparticles into N-doped carbon nanotube/nanofiber-coupled hierarchical branched superstructures(labeled as S-Ni O@N-C NT/NFs).The developed strategy simultaneously combines enhanced thermodynamics via electronic regulation with accelerated kinetics via nanoarchitectonics.The S-doping into Ni O lattice and the 1 D/1 D-integrated hierarchical branched carbon substrate confer the resultant S-Ni O@N-C NT/NFs with regulated electronic configuration,enriched oxygen vacancies,convenient mass diffusion pathways and superior architectural robustness.Thereby,the SNi O@N-C NT/NFs display outstanding OER properties with an overpotential of 277 m V at 10 m A cm^(-2)and impressive long-term durability in KOH medium.Density functional theory(DFT)calculations further corroborate that introducing S-dopant significantly enhances the interaction with key oxygenate intermediates and narrow the band gap.More encouragingly,a rechargeable Zn-air battery using an air-cathode of Pt/C+S-Ni O@N-C NT/NFs exhibits a lower charge voltage and preferable cycling stability in comparison with the commercial Pt/C+Ru O_(2)counterpart.This study highlighting the concurrent consideration of electronic regulation,architectural design and nanocarbon hybridization may shed light on the future exploration of economical and efficient electrocatalysts.
基金Supported by the Fundamental Research Funds for the Central Universities under Grant No 2012QNA03
文摘A novel method for preparing Ta-doped Ti02 via using Ta2 05 as the doping source is proposed. The preparation process combines the hydrothernlal fluorination of Ta2O5 and the subsequent formation of Ta-doped TiO2 sol. The results show that the doped sample annealed at 393 K generates an unstable intermediate NH4 TiOF3, which converts into anatase TiO2 with the increase of temperature. After annealing at ≥673K, the Ta-doped TiO2 nanocrystals with the grain size 〈20nm are obtained. Both the XRD and TG-DSC results confirm that Ta doping prevents the anatase-rutile crystal transition of TiO2. The band gap values of the doped samples, as obtained by UV-vis diffuse reflectance spectra, are smaller than that of pure anatase TiO2. The first-principle pseudopotential method calculations indicate that Ta5+ lies in the TiO2 lattice at the interstitial position.
基金supported by the National Natural Science Foundation of China(22171266)the FJIRSM&IUE Joint Research Fund(RHZX-2019-002)+2 种基金the STS Project(KFJ-STS-QYZD-2021-09002)the National Key Basic Research Program of China(2017YFA0403402)the Project of the National Natural Science Foundation of China(U1932119)。
文摘Fe/N/C catalysts,synthesized through the pyrolysis of Fe-doped metal–organic framework (MOF) precursors,have attracted extensive attention owing to their promising oxygen reduction reaction (ORR) catalytic activity in fuel cells and/or metal-air batteries.However,post-treatments (acid washing,second pyrolysis,and so on) are unavoidable to improve ORR catalytic activity and stability.The method for introducing Fe^(3+) sources (anhydrous Fe Cl_(3)) into the MOF structure,in particular,is a critical step that can avoid time-consuming post-treatments and result in more exposed Fe-N_(x) active sites.Herein,three different Fe doping strategies were systematically investigated to explore their influence on the types of active sites formed and ORR performance.Fe-NC(Zn^(2+)),synthesized by one-step pyrolysis of Fe doped ZIF-8 (Zn^(2+)) precursor which was obtained by adding the anhydrous Fe Cl_(3)source into the Zn(NO_(3))_(2)·6H_(2)O/methanol solution before mixing,possessed the highest Fe-N_(x)active sites due to the high-efficiency substitution of Zn^(2+)ions with Fe^(3+) ions during ZIF-8 growth,the strong interaction between Fe^(3+) ions and N atoms of 2-Methylimidazole (2-MIm),and ZIF-8’s micropore confinement effect.As a result,Fe-NC(Zn^(2+)) presented high ORR activity in the entire p H range (p H=1,7,and 13).At p H=13,Fe-NC(Zn^(2+)) exhibited a half-wave potential (E1/2) of 0.95 V (vs.reversible hydrogen electrode),which was 70 m V higher than that of commercial Pt/C.More importantly,Fe-NC(Zn^(2+)) showed superior ORR stability in neutral media without performance loss after 5,000 cycles.A record-high open-circuit voltage(1.9 V) was obtained when Fe-NC(Zn^(2+)) was used as a cathodic catalyst in assembled Mg-air batteries in neutral media.The assembled liquid and all-solid Mg-air batteries with high performance indicated that Fe-NC(Zn^(2+)) has enormous potential for use in flexible and wearable Mg-air batteries.
基金Project supported bythe Foundation of USTB,China
文摘Gd- or Lu-doped long afterglow red phosphor Y2O2S:Sm^3+ was synthesized using the high temperature flux fusion method. The obtained phosphors were analyzed using X-ray diffraction to determine the crystal structure, and the phase analyses show that the product is in single phase. The luminescence spectra and decay curve were measured on a Hitachi F-4500 fluorescence spectrophotometer. The decay time was determined on an ST-900PM weak light photometer. The analyses show that host doping of Lu improves both luminescence and decay time of the materials. The concentration of doped Lu and Sm was varied in order to determine the optimal condition and to synthesize the product with the best properties. The mechanism of the long afterglow was also briefly discussed.
基金supported primarily by the National Natural Science Foundation of China(Contract No.21975245,51972300,62274155,and U20A20206)the National Key Research and Development Program of China(Grant No.2018YFE0204000)+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB43000000)the National Natural Science Foundation of China under Grant No.62175231.Prof.Kong Liu appreciates the support from the Youth Innovation Promotion Association,the Chinese Academy of Sciences(No.2020114)the Beijing Nova Program(No.2020117).
文摘Graphitic carbon nitride(g-C_(3)N_(4))has been extensively doped with alkali metals to enlarge photocatalytic output,in which cesium(Cs)doping is predicted to be the most efficient.Nevertheless,the sluggish diffusion and doping kinetics of precursors with high melting points,along with imprecise regulation,have raised the debate on whether Cs doping could make sense.For this matter,we attempt to confirm the positive effects of Cs doping on multifunctional photocatalysis by first using cesium acetate with the character of easy manipulation.The optimized Csdoped g-C_(3)N_(4)(CCN)shows a 41.6-fold increase in visible-light-driven hydrogen evolution reaction(HER)compared to pure g-C_(3)N_(4) and impressive degradation capability,especially with 77%refractory tetracycline and almost 100%rhodamine B degradedwithin an hour.The penetration ofCs+is demonstrated to be a mode of interlayer doping,and Cs–N bonds(especially with sp^(2) pyridine N in C═N–C),along with robust chemical interaction and electron exchange,are fabricated.This atomic configuration triggers the broadened spectral response,the improved charge migration,and the activated photocatalytic capacity.Furthermore,we evaluate the CCN/cadmium sulfide hybrid as a Z-scheme configuration,promoting the visible HER yield to 9.02 mmol g^(−1) h^(−1),which is the highest ever reported among all CCN systems.This work adds to the rapidly expanding field of manipulation strategies and supports further development of mediating served for photocatalysis.
文摘We study in this paper the intersubband optical absorption of Si doped GaAs layer for different applied electric fields and donors concentration. The electronic structure has been calculated by solving the Schr?dinger and Poisson equations self-consistently. From our results, it is clear that the subband energies and intersubband optical absorption are quite sensitive to the applied electric field. Also our results indicate that the optical absorption depends not only on the electric field but also on the donor’s concentration. The results of this work should provide useful guidance for the design of optically pumped quantum well lasers and quantum well infrared photo detectors (QWIPs).
基金supported by the National Natural Science Foutndation of China (32071971,32001463)the National Key Research and Development Program of China (2022YFD2300205)+4 种基金Fundamental Research Funds for the Central Universities (2662023ZKPY002)the HZAU-AGIS Cooperation Fund (SZYJY2021008)the Key Research and Development Projects of Henan province (231111113000)the Hubei Agricultural Science and Technology Innovation Center Program (2021-620000-001-032)Hainan Major Science and Technology Projects (ZDKJ202001)。
文摘Soil salinity is a big environmental issue affecting crop production.Although seed nanopriming has been widely used to improve seed germination and seedling growth under salinity,our knowledge about the underlying mechanisms is still insufficient.Herein,we newly synthesized selenium-doped carbon dots nanoparticles coated with poly acrylic acid(poly acrylic acid coated selenium doped carbon dots,PAA@Se-CDs)and used it to prime seeds of rapeseeds.The TEM(transmission electron microscope)size and zeta potential of PAA@Se-CDs are 3.8±0.2 nm and-30 mV,respectively.After 8 h priming,the PAA@Se-CDs nanoparticles were detected in the seed compartments(seed coat,cotyledon,and radicle),while no such signals were detected in the NNP(no nanoparticle control)group(SeO_2 was used as the NNP).Nanopriming with PAA@Se-CDs nanoparticles increased rapeseeds germination(20%)and seedling fresh weight(161%)under saline conditions compared to NNP control.PAA@Se-CDs nanopriming significantly enhanced endo-β-mannanase activities(255%increase,21.55μmol h^(-1)g^(-1)vs.6.06μmol h^(-1)g^(-1),at DAS 1(DAS,days after sowing)),total soluble sugar(33.63 mg g^(-1)FW(fresh weight)vs.20.23 mg g^(-1)FW)and protein contents(1.96μg g^(-1)FW vs.1.0μg g^(-1)FW)to support the growth of germinating seedlings of rapeseeds under salt stress,in comparison with NNP co ntrol.The respiration rate and ATP content were increased by 76%and 607%,respectively.The oxidative damage of salinity due to the overaccumulation of reactive oxygen species(ROS)was alleviated by PAA@Se-CDs nanopriming by increasing the antioxidant enzyme activities(SOD(superoxide dismutase),POD(peroxidase),and CAT(catalase)).Another mechanism behind PAA@Se-CDs nanopriming improving rapeseeds salt tolerance at seedling stage was reducing sodium(Na^(+))accumulation and improving potassium(K^(+))retention,hence increasing the K^(+)/Na^(+)ratio under saline conditions.Overall,our results not only showed that seed nanopriming with PAA@Se-CDs could be a good approach to improve salt tolerance,but also add more knowledge to the mechanism behind nanopriming-improved plant salt tolerance at germination and early seedling growth stage.
基金supported by the National Natural Science Foundation of China,No.82173800 (to JB)Shenzhen Science and Technology Program,No.KQTD20200820113040070 (to JB)。
文摘Na^(+)/K^(+)-ATPase is a transmembrane protein that has important roles in the maintenance of electrochemical gradients across cell membranes by transporting three Na^(+)out of and two K^(+)into cells.Additionally,Na^(+)/K^(+)-ATPase participates in Ca^(2+)-signaling transduction and neurotransmitter release by coordinating the ion concentration gradient across the cell membrane.Na^(+)/K^(+)-ATPase works synergistically with multiple ion channels in the cell membrane to form a dynamic network of ion homeostatic regulation and affects cellular communication by regulating chemical signals and the ion balance among different types of cells.Therefo re,it is not surprising that Na^(+)/K^(+)-ATPase dysfunction has emerged as a risk factor for a variety of neurological diseases.However,published studies have so far only elucidated the important roles of Na^(+)/K^(+)-ATPase dysfunction in disease development,and we are lacking detailed mechanisms to clarify how Na^(+)/K^(+)-ATPase affects cell function.Our recent studies revealed that membrane loss of Na^(+)/K^(+)-ATPase is a key mechanism in many neurological disorders,particularly stroke and Parkinson's disease.Stabilization of plasma membrane Na^(+)/K^(+)-ATPase with an antibody is a novel strategy to treat these diseases.For this reason,Na^(+)/K^(+)-ATPase acts not only as a simple ion pump but also as a sensor/regulator or cytoprotective protein,participating in signal transduction such as neuronal autophagy and apoptosis,and glial cell migration.Thus,the present review attempts to summarize the novel biological functions of Na^(+)/K^(+)-ATPase and Na^(+)/K^(+)-ATPase-related pathogenesis.The potential for novel strategies to treat Na^(+)/K^(+)-ATPase-related brain diseases will also be discussed.
基金Project supported by the National Natural Science Foundation of China(Grant No.10974077)the Natural Science Foundation of Shandong Province,China(Grant No.2009ZRB01702)the Shandong Provincial Higher Educational Science and Technology Program,China(Grant No.J10LA08)
文摘The electronic structures and optical properties of intrinsic β-Ga2O3 and Zn-dopedβ-Ga2O3 are investigated by first-principles calculations. The analysis about the thermal stability shows that Zn-doped β-Ga2O3 remains stable. The Zn doping does not change the basic electronic structure of β-Ga2O3, but only generates an empty energy level above the maximum of the valence band, which is shallow enough to make the Zn-doped β-Ga2O3 a typical p-type semiconductor. Because of Zn doping, absorption and reflectivity are enhanced in the near infrared region. The higher absorption and reflectivity of ZnGa(2) than those of ZnGa(1) are due to more empty energy states of ZnGa(2) than those of ZnGa(1) near Ef in the near infrared region.
基金support from the Free Exploration Project of Frontier Technology for Laoshan Laboratory(No.16-02)the National Natural Science Foundation of China(Nos.22072015 and 21927811)。
文摘Electrocatalytic hydrogen production from seawater holds enormous promise for clean energy generation.Nevertheless,the direct electrolysis of seawater encounters significant challenges due to poor anodic stability caused by detrimental chlorine chemistry.Herein,we present our recent discovery that the incorporation of Ce into Ni Fe layered double hydroxide nanosheet array on Ni foam(Ce-Ni Fe LDH/NF)emerges as a robust electrocatalyst for seawater oxidation.During the seawater oxidation process,CeO_(2)is generated,effectively repelling Cl^(-)and inhibiting the formation of Cl O-,resulting in a notable enhancement in the oxidation activity and stability of alkaline seawater.The prepared Ce-Ni Fe LDH/NF requires only overpotential of 390 m V to achieve the current density of 1 A cm^(-2),while maintaining long-term stability for 500 h,outperforming the performance of Ni Fe LDH/NF(430 m V,150 h)by a significant margin.This study highlights the effectiveness of a Ce-doping strategy in augmenting the activity and stability of materials based on Ni Fe LDH in seawater electrolysis for oxygen evolution.
文摘ZnO single crystals were grown by vapor phase reaction of Zno powder with active carbon powdei at an elevated temperature The typical crystals were colorless and transparent with maximum size o4 0.1 mm in diameter and 25 mm in length, The gas-sensing characteristics of Na+-doped anc undoped single crystals were investigated in 1 %H2. Co and CH, in air between 1 50 and 600℃. It was found that the undoped ZnO single crystals showed little gas sensitivity in air. and Na+-doping can greatly enhance the senstivity by increasing the resistivities. The maximum sensitivity of the samples is 22 (Ra/ Rg) for H2. 1 2 for CO and 4 for CH4
基金Project supported by the National Key Research and Development Program of China (Grant Nos.2020YFF01014706 and 2017YFC0601901)the National Natural Science Foundation of China (Grant Nos.61571019 and 52177026)。
文摘Josephson junction plays a key role not only in studying the basic physics of unconventional iron-based superconductors but also in realizing practical application of thin-film based devices,therefore the preparation of high-quality iron pnictide Josephson junctions is of great importance.In this work,we have successfully fabricated Josephson junctions from Co-doped BaFe_(2)As_(2)thin films using a direct junction fabrication technique which utilizes high energy focused helium ion beam(FHIB).The electrical transport properties were investigated for junctions fabricated with various He^(+)irradiation doses.The junctions show sharp superconducting transition around 24 K with a narrow transition width of 2.5 K,and a dose correlated foot-structure resistance which corresponds to the effective tuning of junction properties by He^(+)irradiation.Significant J_c suppression by more than two orders of magnitude can be achieved by increasing the He^(+)irradiation dose,which is advantageous for the realization of low noise ion pnictide thin film devices.Clear Shapiro steps are observed under 10 GHz microwave irradiation.The above results demonstrate the successful fabrication of high quality and controllable Co-doped BaFe_(2)As_(2)Josephson junction with high reproducibility using the FHIB technique,laying the foundation for future investigating the mechanism of iron-based superconductors,and also the further implementation in various superconducting electronic devices.