AIM: Interstitial cells of Cajal (ICCs) are the pacemaker cells that generate slow waves in the gastrointestinal (GI) tract. We have aimed to investigate the involvement of mitochondrial Na^+-Ca^2+ exchange in ...AIM: Interstitial cells of Cajal (ICCs) are the pacemaker cells that generate slow waves in the gastrointestinal (GI) tract. We have aimed to investigate the involvement of mitochondrial Na^+-Ca^2+ exchange in intestinal pacemaking activity in cultured interstitial cells of Cajal. METHODS: Enzymatic digestions were used to dissociate ICCs from the small intestine of a mouse. The whole-cell patch-clamp configuration was used to record membrane currents (voltage clamp) and potentials (current clamp) from cultured ICCs. RESULTS: Clonazepam and CGP37157 inhibited the pacemaking activity of ICCs in a dose-dependent manner. Clonazepam from 20 to 60 μmol/L and CGP37157 from 10 to 30 μmol/L effectively inhibited Ca^2+ efflux from mitochondria in pacemaking activity of ICCs. The ICsos of clonazepam and CGP37157 were 37.1 and 18.2 μmol/ L, respectively. The addition of 20 μmol/L NiCl2 to the internal solution caused a "wax and wane" phenomenon of pacemaking activity of ICCs. CONCLUSION: These results suggest that mitochondria Na^+-Ca^2+ exchange has an important role in intestina pacemaking activity.展开更多
Results from a systematic experiment on isolated perfused rat heart and isolated myc-cytes of adult rat showed that the mechanism of calcium influx during myocardial ischemia-reperfusion is due to the development of i...Results from a systematic experiment on isolated perfused rat heart and isolated myc-cytes of adult rat showed that the mechanism of calcium influx during myocardial ischemia-reperfusion is due to the development of intracellular sodium overload during ischemic pe-riod, on reperfusion, the high intracellular Na^+ content activated the reverse direction ofNa^+-Ca^(2+) exchange over myocardial sarcolemma (SL), thus a large quantity of extracellularCa^(2+) fluxed over the SL to the intracellular space, forming a condition of intracellular Ca^(2+)overload, which leads to irreversible damage of the myocardium.展开更多
基金Supported by the Seoul National University Hospital Research Fund(03-2004-008)Korea Research Foundation Grant funded by Korea Government(MOEHRD,Basic Research Promotion Fund,KRF-2004-041-E00022)BK21 project for medicine,dentistry,and pharmacy
文摘AIM: Interstitial cells of Cajal (ICCs) are the pacemaker cells that generate slow waves in the gastrointestinal (GI) tract. We have aimed to investigate the involvement of mitochondrial Na^+-Ca^2+ exchange in intestinal pacemaking activity in cultured interstitial cells of Cajal. METHODS: Enzymatic digestions were used to dissociate ICCs from the small intestine of a mouse. The whole-cell patch-clamp configuration was used to record membrane currents (voltage clamp) and potentials (current clamp) from cultured ICCs. RESULTS: Clonazepam and CGP37157 inhibited the pacemaking activity of ICCs in a dose-dependent manner. Clonazepam from 20 to 60 μmol/L and CGP37157 from 10 to 30 μmol/L effectively inhibited Ca^2+ efflux from mitochondria in pacemaking activity of ICCs. The ICsos of clonazepam and CGP37157 were 37.1 and 18.2 μmol/ L, respectively. The addition of 20 μmol/L NiCl2 to the internal solution caused a "wax and wane" phenomenon of pacemaking activity of ICCs. CONCLUSION: These results suggest that mitochondria Na^+-Ca^2+ exchange has an important role in intestina pacemaking activity.
基金"7-5 project" supported by the National Research Foundation of China.
文摘Results from a systematic experiment on isolated perfused rat heart and isolated myc-cytes of adult rat showed that the mechanism of calcium influx during myocardial ischemia-reperfusion is due to the development of intracellular sodium overload during ischemic pe-riod, on reperfusion, the high intracellular Na^+ content activated the reverse direction ofNa^+-Ca^(2+) exchange over myocardial sarcolemma (SL), thus a large quantity of extracellularCa^(2+) fluxed over the SL to the intracellular space, forming a condition of intracellular Ca^(2+)overload, which leads to irreversible damage of the myocardium.