As the importance of email increases,the amount of malicious email is also increasing,so the need for malicious email filtering is growing.Since it is more economical to combine commodity hardware consisting of a medi...As the importance of email increases,the amount of malicious email is also increasing,so the need for malicious email filtering is growing.Since it is more economical to combine commodity hardware consisting of a medium server or PC with a virtual environment to use as a single server resource and filter malicious email using machine learning techniques,we used a Hadoop MapReduce framework and Naïve Bayes among machine learning methods for malicious email filtering.Naïve Bayes was selected because it is one of the top machine learning methods(Support Vector Machine(SVM),Naïve Bayes,K-Nearest Neighbor(KNN),and Decision Tree)in terms of execution time and accuracy.Malicious email was filtered with MapReduce programming using the Naïve Bayes technique,which is a supervised machine learning method,in a Hadoop framework with optimized performance and also with the Python program technique with the Naïve Bayes technique applied in a bare metal server environment with the Hadoop environment not applied.According to the results of a comparison of the accuracy and predictive error rates of the two methods,the Hadoop MapReduce Naïve Bayes method improved the accuracy of spam and ham email identification 1.11 times and the prediction error rate 14.13 times compared to the non-Hadoop Python Naïve Bayes method.展开更多
The naïve Bayes classifier is one of the commonly used data mining methods for classification.Despite its simplicity,naïve Bayes is effective and computationally efficient.Although the strong attribute indep...The naïve Bayes classifier is one of the commonly used data mining methods for classification.Despite its simplicity,naïve Bayes is effective and computationally efficient.Although the strong attribute independence assumption in the naïve Bayes classifier makes it a tractable method for learning,this assumption may not hold in real-world applications.Many enhancements to the basic algorithm have been proposed in order to alleviate the violation of attribute independence assumption.While these methods improve the classification performance,they do not necessarily retain the mathematical structure of the naïve Bayes model and some at the expense of computational time.One approach to reduce the naïvetéof the classifier is to incorporate attribute weights in the conditional probability.In this paper,we proposed a method to incorporate attribute weights to naïve Bayes.To evaluate the performance of our method,we used the public benchmark datasets.We compared our method with the standard naïve Bayes and baseline attribute weighting methods.Experimental results show that our method to incorporate attribute weights improves the classification performance compared to both standard naïve Bayes and baseline attribute weighting methods in terms of classification accuracy and F1,especially when the independence assumption is strongly violated,which was validated using the Chi-square test of independence.展开更多
Intrusion detection is the investigation process of information about the system activities or its data to detect any malicious behavior or unauthorized activity.Most of the IDS implement K-means clustering technique ...Intrusion detection is the investigation process of information about the system activities or its data to detect any malicious behavior or unauthorized activity.Most of the IDS implement K-means clustering technique due to its linear complexity and fast computing ability.Nonetheless,it is Naïve use of the mean data value for the cluster core that presents a major drawback.The chances of two circular clusters having different radius and centering at the same mean will occur.This condition cannot be addressed by the K-means algorithm because the mean value of the various clusters is very similar together.However,if the clusters are not spherical,it fails.To overcome this issue,a new integrated hybrid model by integrating expectation maximizing(EM)clustering using a Gaussian mixture model(GMM)and naïve Bays classifier have been proposed.In this model,GMM give more flexibility than K-Means in terms of cluster covariance.Also,they use probabilities function and soft clustering,that’s why they can have multiple cluster for a single data.In GMM,we can define the cluster form in GMM by two parameters:the mean and the standard deviation.This means that by using these two parameters,the cluster can take any kind of elliptical shape.EM-GMM will be used to cluster data based on data activity into the corresponding category.展开更多
This paper proposed an improved Naïve Bayes Classifier for sentimental analysis from a large-scale dataset such as in YouTube.YouTube contains large unstructured and unorganized comments and reactions,which carry...This paper proposed an improved Naïve Bayes Classifier for sentimental analysis from a large-scale dataset such as in YouTube.YouTube contains large unstructured and unorganized comments and reactions,which carry important information.Organizing large amounts of data and extracting useful information is a challenging task.The extracted information can be considered as new knowledge and can be used for deci sion-making.We extract comments from YouTube on videos and categorized them in domain-specific,and then apply the Naïve Bayes classifier with improved techniques.Our method provided a decent 80%accuracy in classifying those comments.This experiment shows that the proposed method provides excellent adaptability for large-scale text classification.展开更多
<span style="font-family:Verdana;">The presence of bearing faults reduces the efficiency of rotating machines and thus increases energy consumption or even the total stoppage of the machine. </span&...<span style="font-family:Verdana;">The presence of bearing faults reduces the efficiency of rotating machines and thus increases energy consumption or even the total stoppage of the machine. </span><span style="font-family:Verdana;">It becomes essential to correctly diagnose the fault caused by the bearing.</span><span style="font-family:Verdana;"> Hence the importance of determining an effective features extraction method that best describes the fault. The vision of this paper is to merge the features selection methods in order to define the most relevant featuresin the texture </span><span style="font-family:Verdana;">of the vibration signal images. In this study, the Gray Level Co-occurrence </span><span style="font-family:Verdana;">Matrix (GLCM) in texture analysis is applied on the vibration signal represented in images. Features</span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">selection based on the merge of PCA (Principal component Analysis) method and SFE (Sequential Features Extraction) method is </span><span style="font-family:Verdana;">done to obtain the most relevant features. The multiclass-Na<span style="white-space:nowrap;">?</span>ve Bayesclassifi</span><span style="font-family:Verdana;">er is used to test the proposed approach. The success rate of this classification is 98.27%. The relevant features obtained give promising results and are more efficient than the methods observed in the literature.</span></span></span></span>展开更多
The Washington,DC crash statistic report for the period from 2013 to 2015 shows that the city recorded about 41789 crashes at unsignalized intersections,which resulted in 14168 injuries and 51 fatalities.The economic ...The Washington,DC crash statistic report for the period from 2013 to 2015 shows that the city recorded about 41789 crashes at unsignalized intersections,which resulted in 14168 injuries and 51 fatalities.The economic cost of these fatalities has been estimated to be in the millions of dollars.It is therefore necessary to investigate the predictability of the occurrence of theses crashes,based on pertinent factors,in order to provide mitigating measures.This research focused on the development of models to predict the injury severity of crashes using support vector machines(SVMs)and Gaussian naïve Bayes classifiers(GNBCs).The models were developed based on 3307 crashes that occurred from 2008 to 2015.Eight SVM models and a GNBC model were developed.The most accurate model was the SVM with a radial basis kernel function.This model predicted the severity of an injury sustained in a crash with an accuracy of approximately 83.2%.The GNBC produced the worst-performing model with an accuracy of 48.5%.These models will enable transport officials to identify crash-prone unsignalized intersections to provide the necessary countermeasures beforehand.展开更多
Weused two probabilisticmethods,Gaussian Naïve Bayes and Logistic Regression to predict the genotypes of the offspring of two maize strains,the BLC and the JNE genotypes,based on the phenotypic traits of the pare...Weused two probabilisticmethods,Gaussian Naïve Bayes and Logistic Regression to predict the genotypes of the offspring of two maize strains,the BLC and the JNE genotypes,based on the phenotypic traits of the parents.We determined the prediction performance of the two models with the overall accuracy and the area under the receiver operating curve(AUC).The overall accuracy for both models ranged between 82%and 87%.The values of the area under the receiver operating curvewere 0.90 or higher for Logistic Regression models,and 0.85 or higher for Gaussian Naïve Bayesmodels.These statistics indicated that the two models were very effective in predicting the genotypes of the offspring.Furthermore,bothmodels predicted the BLC genotype with higher accuracy than they did the JNE genotype.The BLC genotype appeared more homogeneous and more predictable.A Chi-square test for the homogeneity of the confusionmatrices showed that in all cases the twomodels produced similar prediction results.That finding was in line with the assertion by Mitchell(2010)who theoretically showed that the twomodels are essentially the same.With logistic regression,each subset of the original data or its corresponding principal components produced exactly the same prediction results.The AUC value may be viewed as a criterion for parent-offspring resemblance for each set of phenotypic traits considered in the analysis.展开更多
Classification model has received great attention in any domain of research and also a reliable tool for medical disease diagnosis. The domain of classification model is used in disease diagnosis, disease prediction, ...Classification model has received great attention in any domain of research and also a reliable tool for medical disease diagnosis. The domain of classification model is used in disease diagnosis, disease prediction, bio informatics, crime prediction and so on. However, an efficient disease diagnosis model was compromised the disease prediction. In this paper, a Rough Set Rule-based Multitude Classifier (RS-RMC) is developed to improve the disease prediction rate and enhance the class accuracy of disease being diagnosed. The RS-RMC involves two steps. Initially, a Rough Set model is used for Feature Selection aiming at minimizing the execution time for obtaining the disease feature set. A Multitude Classifier model is presented in second step for detection of heart disease and for efficient classification. The Na?ve Bayes Classifier algorithm is designed for efficient identification of classes to measure the relationship between disease features and improving disease prediction rate. Experimental analysis shows that RS-RMC is used to reduce the execution time for extracting the disease feature with minimum false positive rate compared to the state-of-the-art works.展开更多
The major environmental hazard in this pandemic is the unhygienic dis-posal of medical waste.Medical wastage is not properly managed it will become a hazard to the environment and humans.Managing medical wastage is a ...The major environmental hazard in this pandemic is the unhygienic dis-posal of medical waste.Medical wastage is not properly managed it will become a hazard to the environment and humans.Managing medical wastage is a major issue in the city,municipalities in the aspects of the environment,and logistics.An efficient supply chain with edge computing technology is used in managing medical waste.The supply chain operations include processing of waste collec-tion,transportation,and disposal of waste.Many research works have been applied to improve the management of wastage.The main issues in the existing techniques are ineffective and expensive and centralized edge computing which leads to failure in providing security,trustworthiness,and transparency.To over-come these issues,in this paper we implement an efficient Naive Bayes classifier algorithm and Q-Learning algorithm in decentralized edge computing technology with a binary bat optimization algorithm(NBQ-BBOA).This proposed work is used to track,detect,and manage medical waste.To minimize the transferring cost of medical wastage from various nodes,the Q-Learning algorithm is used.The accuracy obtained for the Naïve Bayes algorithm is 88%,the Q-Learning algo-rithm is 82%and NBQ-BBOA is 98%.The error rate of Root Mean Square Error(RMSE)and Mean Error(MAE)for the proposed work NBQ-BBOA are 0.012 and 0.045.展开更多
文摘As the importance of email increases,the amount of malicious email is also increasing,so the need for malicious email filtering is growing.Since it is more economical to combine commodity hardware consisting of a medium server or PC with a virtual environment to use as a single server resource and filter malicious email using machine learning techniques,we used a Hadoop MapReduce framework and Naïve Bayes among machine learning methods for malicious email filtering.Naïve Bayes was selected because it is one of the top machine learning methods(Support Vector Machine(SVM),Naïve Bayes,K-Nearest Neighbor(KNN),and Decision Tree)in terms of execution time and accuracy.Malicious email was filtered with MapReduce programming using the Naïve Bayes technique,which is a supervised machine learning method,in a Hadoop framework with optimized performance and also with the Python program technique with the Naïve Bayes technique applied in a bare metal server environment with the Hadoop environment not applied.According to the results of a comparison of the accuracy and predictive error rates of the two methods,the Hadoop MapReduce Naïve Bayes method improved the accuracy of spam and ham email identification 1.11 times and the prediction error rate 14.13 times compared to the non-Hadoop Python Naïve Bayes method.
文摘The naïve Bayes classifier is one of the commonly used data mining methods for classification.Despite its simplicity,naïve Bayes is effective and computationally efficient.Although the strong attribute independence assumption in the naïve Bayes classifier makes it a tractable method for learning,this assumption may not hold in real-world applications.Many enhancements to the basic algorithm have been proposed in order to alleviate the violation of attribute independence assumption.While these methods improve the classification performance,they do not necessarily retain the mathematical structure of the naïve Bayes model and some at the expense of computational time.One approach to reduce the naïvetéof the classifier is to incorporate attribute weights in the conditional probability.In this paper,we proposed a method to incorporate attribute weights to naïve Bayes.To evaluate the performance of our method,we used the public benchmark datasets.We compared our method with the standard naïve Bayes and baseline attribute weighting methods.Experimental results show that our method to incorporate attribute weights improves the classification performance compared to both standard naïve Bayes and baseline attribute weighting methods in terms of classification accuracy and F1,especially when the independence assumption is strongly violated,which was validated using the Chi-square test of independence.
文摘Intrusion detection is the investigation process of information about the system activities or its data to detect any malicious behavior or unauthorized activity.Most of the IDS implement K-means clustering technique due to its linear complexity and fast computing ability.Nonetheless,it is Naïve use of the mean data value for the cluster core that presents a major drawback.The chances of two circular clusters having different radius and centering at the same mean will occur.This condition cannot be addressed by the K-means algorithm because the mean value of the various clusters is very similar together.However,if the clusters are not spherical,it fails.To overcome this issue,a new integrated hybrid model by integrating expectation maximizing(EM)clustering using a Gaussian mixture model(GMM)and naïve Bays classifier have been proposed.In this model,GMM give more flexibility than K-Means in terms of cluster covariance.Also,they use probabilities function and soft clustering,that’s why they can have multiple cluster for a single data.In GMM,we can define the cluster form in GMM by two parameters:the mean and the standard deviation.This means that by using these two parameters,the cluster can take any kind of elliptical shape.EM-GMM will be used to cluster data based on data activity into the corresponding category.
文摘This paper proposed an improved Naïve Bayes Classifier for sentimental analysis from a large-scale dataset such as in YouTube.YouTube contains large unstructured and unorganized comments and reactions,which carry important information.Organizing large amounts of data and extracting useful information is a challenging task.The extracted information can be considered as new knowledge and can be used for deci sion-making.We extract comments from YouTube on videos and categorized them in domain-specific,and then apply the Naïve Bayes classifier with improved techniques.Our method provided a decent 80%accuracy in classifying those comments.This experiment shows that the proposed method provides excellent adaptability for large-scale text classification.
文摘<span style="font-family:Verdana;">The presence of bearing faults reduces the efficiency of rotating machines and thus increases energy consumption or even the total stoppage of the machine. </span><span style="font-family:Verdana;">It becomes essential to correctly diagnose the fault caused by the bearing.</span><span style="font-family:Verdana;"> Hence the importance of determining an effective features extraction method that best describes the fault. The vision of this paper is to merge the features selection methods in order to define the most relevant featuresin the texture </span><span style="font-family:Verdana;">of the vibration signal images. In this study, the Gray Level Co-occurrence </span><span style="font-family:Verdana;">Matrix (GLCM) in texture analysis is applied on the vibration signal represented in images. Features</span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">selection based on the merge of PCA (Principal component Analysis) method and SFE (Sequential Features Extraction) method is </span><span style="font-family:Verdana;">done to obtain the most relevant features. The multiclass-Na<span style="white-space:nowrap;">?</span>ve Bayesclassifi</span><span style="font-family:Verdana;">er is used to test the proposed approach. The success rate of this classification is 98.27%. The relevant features obtained give promising results and are more efficient than the methods observed in the literature.</span></span></span></span>
文摘The Washington,DC crash statistic report for the period from 2013 to 2015 shows that the city recorded about 41789 crashes at unsignalized intersections,which resulted in 14168 injuries and 51 fatalities.The economic cost of these fatalities has been estimated to be in the millions of dollars.It is therefore necessary to investigate the predictability of the occurrence of theses crashes,based on pertinent factors,in order to provide mitigating measures.This research focused on the development of models to predict the injury severity of crashes using support vector machines(SVMs)and Gaussian naïve Bayes classifiers(GNBCs).The models were developed based on 3307 crashes that occurred from 2008 to 2015.Eight SVM models and a GNBC model were developed.The most accurate model was the SVM with a radial basis kernel function.This model predicted the severity of an injury sustained in a crash with an accuracy of approximately 83.2%.The GNBC produced the worst-performing model with an accuracy of 48.5%.These models will enable transport officials to identify crash-prone unsignalized intersections to provide the necessary countermeasures beforehand.
文摘Weused two probabilisticmethods,Gaussian Naïve Bayes and Logistic Regression to predict the genotypes of the offspring of two maize strains,the BLC and the JNE genotypes,based on the phenotypic traits of the parents.We determined the prediction performance of the two models with the overall accuracy and the area under the receiver operating curve(AUC).The overall accuracy for both models ranged between 82%and 87%.The values of the area under the receiver operating curvewere 0.90 or higher for Logistic Regression models,and 0.85 or higher for Gaussian Naïve Bayesmodels.These statistics indicated that the two models were very effective in predicting the genotypes of the offspring.Furthermore,bothmodels predicted the BLC genotype with higher accuracy than they did the JNE genotype.The BLC genotype appeared more homogeneous and more predictable.A Chi-square test for the homogeneity of the confusionmatrices showed that in all cases the twomodels produced similar prediction results.That finding was in line with the assertion by Mitchell(2010)who theoretically showed that the twomodels are essentially the same.With logistic regression,each subset of the original data or its corresponding principal components produced exactly the same prediction results.The AUC value may be viewed as a criterion for parent-offspring resemblance for each set of phenotypic traits considered in the analysis.
文摘Classification model has received great attention in any domain of research and also a reliable tool for medical disease diagnosis. The domain of classification model is used in disease diagnosis, disease prediction, bio informatics, crime prediction and so on. However, an efficient disease diagnosis model was compromised the disease prediction. In this paper, a Rough Set Rule-based Multitude Classifier (RS-RMC) is developed to improve the disease prediction rate and enhance the class accuracy of disease being diagnosed. The RS-RMC involves two steps. Initially, a Rough Set model is used for Feature Selection aiming at minimizing the execution time for obtaining the disease feature set. A Multitude Classifier model is presented in second step for detection of heart disease and for efficient classification. The Na?ve Bayes Classifier algorithm is designed for efficient identification of classes to measure the relationship between disease features and improving disease prediction rate. Experimental analysis shows that RS-RMC is used to reduce the execution time for extracting the disease feature with minimum false positive rate compared to the state-of-the-art works.
文摘The major environmental hazard in this pandemic is the unhygienic dis-posal of medical waste.Medical wastage is not properly managed it will become a hazard to the environment and humans.Managing medical wastage is a major issue in the city,municipalities in the aspects of the environment,and logistics.An efficient supply chain with edge computing technology is used in managing medical waste.The supply chain operations include processing of waste collec-tion,transportation,and disposal of waste.Many research works have been applied to improve the management of wastage.The main issues in the existing techniques are ineffective and expensive and centralized edge computing which leads to failure in providing security,trustworthiness,and transparency.To over-come these issues,in this paper we implement an efficient Naive Bayes classifier algorithm and Q-Learning algorithm in decentralized edge computing technology with a binary bat optimization algorithm(NBQ-BBOA).This proposed work is used to track,detect,and manage medical waste.To minimize the transferring cost of medical wastage from various nodes,the Q-Learning algorithm is used.The accuracy obtained for the Naïve Bayes algorithm is 88%,the Q-Learning algo-rithm is 82%and NBQ-BBOA is 98%.The error rate of Root Mean Square Error(RMSE)and Mean Error(MAE)for the proposed work NBQ-BBOA are 0.012 and 0.045.