The liver has many significant functions,such as detoxification,the urea cycle,gluconeogenesis,and protein synthesis.Systemic diseases,hypoxia,infections,drugs,and toxins can easily affect the liver,which is extremely...The liver has many significant functions,such as detoxification,the urea cycle,gluconeogenesis,and protein synthesis.Systemic diseases,hypoxia,infections,drugs,and toxins can easily affect the liver,which is extremely sensitive to injury.Systemic infection of severe acute respiratory syndrome coronavirus 2 can cause liver damage.The primary regulator of intracellular pH in the liver is the Na+/H+exchanger(NHE).Physiologically,NHE protects hepatocytes from apoptosis by making the intracellular pH alkaline.Severe acute respiratory syndrome coronavirus 2 increases local angiotensin II levels by binding to angiotensinconverting enzyme 2.In severe cases of coronavirus disease 2019,high angiotensin II levels may cause NHE overstimulation and lipid accumulation in the liver.NHE overstimulation can lead to hepatocyte death.NHE overstimulation may trigger a cytokine storm by increasing proinflammatory cytokines in the liver.Since the release of proinflammatory cytokines such as interleukin-6 increases with NHE activation,the virus may indirectly cause an increase in fibrinogen and D-dimer levels.NHE overstimulation may cause thrombotic events and systemic damage by increasing fibrinogen levels and cytokine release.Also,NHE overstimulation causes an increase in the urea cycle while inhibiting vitamin D synthesis and gluconeogenesis in the liver.Increasing NHE3 activity leads to Na+loading,which impairs the containment and fluidity of bile acid.NHE overstimulation can change the gut microbiota composition by disrupting the structure and fluidity of bile acid,thus triggering systemic damage.Unlike other tissues,tumor necrosis factor-alpha and angiotensin II decrease NHE3 activity in the intestine.Thus,increased luminal Na+leads to diarrhea and cytokine release.Severe acute respiratory syndrome coronavirus 2-induced local and systemic damage can be improved by preventing virus-induced NHE overstimulation in the liver.展开更多
We determined whether La3+ enter human peripheral blood lymphocytes via Na+/Ca2+ exchanger (measured with fura-2). We first compared the sensitivity of fura-2 with La3+ and Ca2+, the result indicates that the sensitiv...We determined whether La3+ enter human peripheral blood lymphocytes via Na+/Ca2+ exchanger (measured with fura-2). We first compared the sensitivity of fura-2 with La3+ and Ca2+, the result indicates that the sensitivity of fura-2 for La3+ is much greater than for Ca2+. La3+ forms a 1:1 La3+-fura-2 complex (apparent dissociation constant = 1.7x10(-12) mol/L, pH 7.05). Ouabain-pretreated cells, suspended in Na+-free medium, showed that La3+ can enter human lymphocytes via the Na-i(+)/Ca2+ (La3+)(o) exchanger and is found to be about 10(-12) mol/L in cells exposed to 0.4 mmol/L La3+. Otherwise, the higher concentration (0.1 mmol/L) blocks the Na-i(+)/Ca2+(La3+)(o) exchange-mediated influx of Ca2+, but the lower concentration (0.01 mmol/L) appears to increase Ca2+ entry.展开更多
1.IntroductionDunn and Farrington[1]found that theNa ion in Naβ″-alumina single crystal canbe exchanged completely or partially withGd;,Nd;,Eu;,Yb;,Sm;,Tb;,Dy;,Bi;and Pr;ions,but no reports havebeen published about ...1.IntroductionDunn and Farrington[1]found that theNa ion in Naβ″-alumina single crystal canbe exchanged completely or partially withGd;,Nd;,Eu;,Yb;,Sm;,Tb;,Dy;,Bi;and Pr;ions,but no reports havebeen published about the ion exchange reac-tion between La3+ and Naβ″-alumina.If anion exchanged polycrystalline β″-alumina isavailable and its ionic conductivity is highenough to be applied as a solid electrolyte inthe galvanic cell,it can be used in various展开更多
This paper reports the kinetic process of Ag ion exchange for the polycrystalline Na-β'-Al2O3.The interdiffusion coefficients in the process of Ag+ and Na+ ion exchange have been calculated with an 'one dimen...This paper reports the kinetic process of Ag ion exchange for the polycrystalline Na-β'-Al2O3.The interdiffusion coefficients in the process of Ag+ and Na+ ion exchange have been calculated with an 'one dimensional double side diffusion model'. Microstructures of the samples were observed and analysed by XRD, EMPA, SEM. The results of the conductivity measurements for samples with Na+, Ag+ and Na+-Ag+ mobile ions are presented and explained展开更多
文摘The liver has many significant functions,such as detoxification,the urea cycle,gluconeogenesis,and protein synthesis.Systemic diseases,hypoxia,infections,drugs,and toxins can easily affect the liver,which is extremely sensitive to injury.Systemic infection of severe acute respiratory syndrome coronavirus 2 can cause liver damage.The primary regulator of intracellular pH in the liver is the Na+/H+exchanger(NHE).Physiologically,NHE protects hepatocytes from apoptosis by making the intracellular pH alkaline.Severe acute respiratory syndrome coronavirus 2 increases local angiotensin II levels by binding to angiotensinconverting enzyme 2.In severe cases of coronavirus disease 2019,high angiotensin II levels may cause NHE overstimulation and lipid accumulation in the liver.NHE overstimulation can lead to hepatocyte death.NHE overstimulation may trigger a cytokine storm by increasing proinflammatory cytokines in the liver.Since the release of proinflammatory cytokines such as interleukin-6 increases with NHE activation,the virus may indirectly cause an increase in fibrinogen and D-dimer levels.NHE overstimulation may cause thrombotic events and systemic damage by increasing fibrinogen levels and cytokine release.Also,NHE overstimulation causes an increase in the urea cycle while inhibiting vitamin D synthesis and gluconeogenesis in the liver.Increasing NHE3 activity leads to Na+loading,which impairs the containment and fluidity of bile acid.NHE overstimulation can change the gut microbiota composition by disrupting the structure and fluidity of bile acid,thus triggering systemic damage.Unlike other tissues,tumor necrosis factor-alpha and angiotensin II decrease NHE3 activity in the intestine.Thus,increased luminal Na+leads to diarrhea and cytokine release.Severe acute respiratory syndrome coronavirus 2-induced local and systemic damage can be improved by preventing virus-induced NHE overstimulation in the liver.
基金The authors acknowledge the support of the National Natural Scicnce Foundation of ChinaProvincial Natural Science Foundation of Shanxi.
文摘We determined whether La3+ enter human peripheral blood lymphocytes via Na+/Ca2+ exchanger (measured with fura-2). We first compared the sensitivity of fura-2 with La3+ and Ca2+, the result indicates that the sensitivity of fura-2 for La3+ is much greater than for Ca2+. La3+ forms a 1:1 La3+-fura-2 complex (apparent dissociation constant = 1.7x10(-12) mol/L, pH 7.05). Ouabain-pretreated cells, suspended in Na+-free medium, showed that La3+ can enter human lymphocytes via the Na-i(+)/Ca2+ (La3+)(o) exchanger and is found to be about 10(-12) mol/L in cells exposed to 0.4 mmol/L La3+. Otherwise, the higher concentration (0.1 mmol/L) blocks the Na-i(+)/Ca2+(La3+)(o) exchange-mediated influx of Ca2+, but the lower concentration (0.01 mmol/L) appears to increase Ca2+ entry.
文摘1.IntroductionDunn and Farrington[1]found that theNa ion in Naβ″-alumina single crystal canbe exchanged completely or partially withGd;,Nd;,Eu;,Yb;,Sm;,Tb;,Dy;,Bi;and Pr;ions,but no reports havebeen published about the ion exchange reac-tion between La3+ and Naβ″-alumina.If anion exchanged polycrystalline β″-alumina isavailable and its ionic conductivity is highenough to be applied as a solid electrolyte inthe galvanic cell,it can be used in various
文摘This paper reports the kinetic process of Ag ion exchange for the polycrystalline Na-β'-Al2O3.The interdiffusion coefficients in the process of Ag+ and Na+ ion exchange have been calculated with an 'one dimensional double side diffusion model'. Microstructures of the samples were observed and analysed by XRD, EMPA, SEM. The results of the conductivity measurements for samples with Na+, Ag+ and Na+-Ag+ mobile ions are presented and explained