期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
A Novel Application of Lithium Heteropoly Blue as Non-aqueous Electrolyte in Polyacenic Semiconductor-Li Secondary Batteries
1
作者 WANG Xiu-li +2 位作者 XIN Ming-hong 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2003年第1期10-14,共5页
Lithium heteropoly blue(Li 5PW Ⅵ 10 W Ⅴ 2O 40 ) was used as a non aqueous electrolyte in the polyacenic semiconductor (PAS) Li secondary battery instead of LiClO 4. The properties of the PAS Li secon... Lithium heteropoly blue(Li 5PW Ⅵ 10 W Ⅴ 2O 40 ) was used as a non aqueous electrolyte in the polyacenic semiconductor (PAS) Li secondary battery instead of LiClO 4. The properties of the PAS Li secondary battery, especially the effect of Li 5PW Ⅵ 10 W Ⅴ 2O 40 on the capacity, the cycle property and the self discharging of the battery have been investigated. The results indicate that not only Li 5PW Ⅵ 10 W Ⅴ 2O 40 can overcome the disadvantages of LiClO 4, which is apt to explode when heated or rammed, but also the PAS Li secondary battery assembled with the novel electrolyte has a larger capacity and smaller self discharging than that assembled with LiClO 4. Therefore, it is believed that lithium heteropoly blue is a better and novel electrolyte for the PAS secondary battery and exhibits significant and practical application. 展开更多
关键词 Lithium heteropoly blue non aqueous electrolyte Polyacenic semiconductor Secondary battery
下载PDF
All-climate aqueous Na-ion batteries using “water-in-salt” electrolyte 被引量:7
2
作者 Yu Zhang Jie Xu +4 位作者 Zhi Li Yanrong Wang Sijia Wang Xiaoli Dong Yonggang Wang 《Science Bulletin》 SCIE EI CSCD 2022年第2期161-170,M0004,共11页
Aqueous Na-ion batteries have been extensively studied for large-scale energy storage systems. However,their wide application is still limited by their inferior cycle stability(<3000 cycles) and poor temperature to... Aqueous Na-ion batteries have been extensively studied for large-scale energy storage systems. However,their wide application is still limited by their inferior cycle stability(<3000 cycles) and poor temperature tolerance. Furthermore, many of the reported high rate behaviors are achieved at a low mass loading(<3 mg cm^(-2)) of the electrodes. Herein, we propose an aqueous Na-ion battery which includes a Ni-based Prussian blue(NiHCF) cathode, a carbonyl-based organic compound, 5,7,12,14-pentacenetetrone(PT)anode and a “water-in-salt” electrolyte(17 mol kg^(-1)NaClO_(4)in water). Its operation involves the reversible coordination reaction of the PT anode and the extraction/insertion of Na;in the NiHCF cathode. It is demonstrated that the wide internal spaces of the PT anode and NiHCF cathode can not only buffer the volumetric change induced by Na;storage, but also enable fast kinetics. The full cell exhibits a supercapacitor-like rate performance of 50 A g^(-1)(corresponding to a discharge or charge within 6.3 s)and a super-long lifespan of 15,000 cycles. Moreover, the excellent rate performance can still be preserved even with a high mass loading of the electrodes(15 mgNiHCFcm^(-2)and 8 mgPTcm^(-2)).Especially, the cell can work well in a wide temperature range, from-40 to 100 °C, showing a typical all-climate operation. 展开更多
关键词 aqueous na-ion batteries All-climate Long lifespan “Water-in-salt”electrolyte
原文传递
Hydrogen isotope effects: A new path to high-energy aqueous rechargeable Li/Na-ion batteries 被引量:2
3
作者 Xue-Ting Li Jia Chou +3 位作者 Yu-Hui Zhu Wen-Peng Wang Sen Xin Yu-Guo Guo 《eScience》 2023年第3期15-21,共7页
Aqueous rechargeable Li/Na-ion batteries have shown promise for sustainable large-scale energy storage due to their safety,low cost,and environmental benignity.However,practical applications of aqueous batteries are p... Aqueous rechargeable Li/Na-ion batteries have shown promise for sustainable large-scale energy storage due to their safety,low cost,and environmental benignity.However,practical applications of aqueous batteries are plagued by water's intrinsically narrow electrochemical stability window,which results in low energy density.In this perspective article,we review several strategies to broaden the electrochemical window of aqueous electrolytes and realize high-energy aqueous batteries.Specifically,we highlight our recent findings on stabilizing aqueous Li storage electrochemistry using a deuterium dioxide-based aqueous electrolyte,which shows significant hydrogen isotope effects that trigger a wider electrochemical window and inhibit detrimental parasitic processes. 展开更多
关键词 aqueous Li/na-ion battery Energy density aqueous electrolyte Electrochemical stability window Hydrogen isotope effect
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部