A S 2O 2- 8/ZrO 2 Al 2O 3 type solid superacid catalyst was prepared from ZrOCl 2·8H 2O, AlCl 3· 6H 2O and (NH 4) 2S 2O 8 by coprecipitation, maceration and calcination processes. Their crystal structures an...A S 2O 2- 8/ZrO 2 Al 2O 3 type solid superacid catalyst was prepared from ZrOCl 2·8H 2O, AlCl 3· 6H 2O and (NH 4) 2S 2O 8 by coprecipitation, maceration and calcination processes. Their crystal structures and acidities were determined by XRD and Hammett method, respectively. The activity of the catalyst was studied as function of Al 2O 3 content, calcination temperature and time in the esterification of acetic acid with butanol, and a conversion of 96 5% was obtained. The catalyst gave also higher yields in syntheses of ketals and acetals: cyclohexanone ethylene ketal(86 2%), acetophenone ethylene ketal(78 5%), acetylacetic ester ketal(88 5%), benzaldehyde glycol acetal(76 3%). The chemical structures of the products were confirmed by IR spectra.展开更多
Nano-particle Pd/?-Al2O3 monometallic and Pd-Cu/?-Al2O3 bimetall ic catalysts were prepared by solvated metal atom impregnation (SMAI) method. Th e results of XRD measurement indicated that Pd- Cu alloy was formed in ...Nano-particle Pd/?-Al2O3 monometallic and Pd-Cu/?-Al2O3 bimetall ic catalysts were prepared by solvated metal atom impregnation (SMAI) method. Th e results of XRD measurement indicated that Pd- Cu alloy was formed in the bim etallic catalysts and the crystalline particle size of the alloy increased as Cu contents increased with average diameters < 6.0nm for all the samples. XPS and Auger spectra showed that Pd was in zero- valent state, Cu existed mainly in z ero- valent state and partially in monovalent state Cu+. The Pd/?-Al2O3 and Pd-Cu/?-Al2O3 catalysts exhibited higher activity for CO oxidation at low temperature. The activity of Pd-Cu/?-Al2O3 bimetallic catalyst was hig her than that of Pd/?-Al2O3 monometallic catalyst. The Pd-Cu/?-Al2O3 c atalyst with Pd/Cu atomic ratio of 1∶1 showed the highest activity.展开更多
文摘A S 2O 2- 8/ZrO 2 Al 2O 3 type solid superacid catalyst was prepared from ZrOCl 2·8H 2O, AlCl 3· 6H 2O and (NH 4) 2S 2O 8 by coprecipitation, maceration and calcination processes. Their crystal structures and acidities were determined by XRD and Hammett method, respectively. The activity of the catalyst was studied as function of Al 2O 3 content, calcination temperature and time in the esterification of acetic acid with butanol, and a conversion of 96 5% was obtained. The catalyst gave also higher yields in syntheses of ketals and acetals: cyclohexanone ethylene ketal(86 2%), acetophenone ethylene ketal(78 5%), acetylacetic ester ketal(88 5%), benzaldehyde glycol acetal(76 3%). The chemical structures of the products were confirmed by IR spectra.
文摘Nano-particle Pd/?-Al2O3 monometallic and Pd-Cu/?-Al2O3 bimetall ic catalysts were prepared by solvated metal atom impregnation (SMAI) method. Th e results of XRD measurement indicated that Pd- Cu alloy was formed in the bim etallic catalysts and the crystalline particle size of the alloy increased as Cu contents increased with average diameters < 6.0nm for all the samples. XPS and Auger spectra showed that Pd was in zero- valent state, Cu existed mainly in z ero- valent state and partially in monovalent state Cu+. The Pd/?-Al2O3 and Pd-Cu/?-Al2O3 catalysts exhibited higher activity for CO oxidation at low temperature. The activity of Pd-Cu/?-Al2O3 bimetallic catalyst was hig her than that of Pd/?-Al2O3 monometallic catalyst. The Pd-Cu/?-Al2O3 c atalyst with Pd/Cu atomic ratio of 1∶1 showed the highest activity.