Erbium, Ytterbium-codoped ZrO 2 nanoparticles(ZrO 2∶Er 3+ ,Yb 3+ ) were prepared by the sol-emulsion-gel technique. The purpose of the present study is the application of upconversion phosphor in the biolog...Erbium, Ytterbium-codoped ZrO 2 nanoparticles(ZrO 2∶Er 3+ ,Yb 3+ ) were prepared by the sol-emulsion-gel technique. The purpose of the present study is the application of upconversion phosphor in the biological label. In order to make out the mechanism of upconversion under 980 nm excitation the 488 nm pump was used. The influence of temperature on the crystallite phase was studied. The results confirm the upconverted mechanism in ZrO 2∶Er 3+ ,Yb 3+ nanocrystals is due to an energy transfer upconversion(ETU).展开更多
ZrO2-mullite nano-ceramics were fabricated by in-situ controlled crystallizing from SiO2-Al2O3-ZrO2 amorphous bulk. The thermal transformation sequences of the SiO2-Al2O3-ZrO2 amorphous bulk were investigated by X-ray...ZrO2-mullite nano-ceramics were fabricated by in-situ controlled crystallizing from SiO2-Al2O3-ZrO2 amorphous bulk. The thermal transformation sequences of the SiO2-Al2O3-ZrO2 amorphous bulk were investigated by X-ray diffraction, infrared spectrum, scanning electron microscope and differential scanning calorimetric. And the mechanical properties of the nano-ceramics were studied. The results show that the bulks are still in amorphous state at 900 ℃ and the t-ZrO2 forms at about 950 ℃ with a faint spinel-like phase which changes into mullite on further heating. ZrO2 and mullite become major phases at 1 100 ℃ and an amount of m-ZrO2 occur at the same time. The sample heated at 950 ℃ for 2 h and then at 1 100 ℃ for 1 h shows very dense and homogenous microstructure with ball-like grains in size of 20-50 nm. With the increase of crystallization temperature up to 1 350 ℃, the grains grow quickly and some grow into lath-shaped grains with major diameter of 5 μm. After two-step treatment the highest micro-hardness, flexural strength and fracture toughness of the samples are 13.72 GPa, 520 MPa and 5.13 MPa·m1/2, respectively.展开更多
Cu/ZrO2/SiO2 are efficient catalysts for the selective hydrogenation of CO2 to CH3OH. In order to understand the role of ZrO2 in these mixed-oxides based catalysts, in situ X-ray absorption spectroscopy has been carri...Cu/ZrO2/SiO2 are efficient catalysts for the selective hydrogenation of CO2 to CH3OH. In order to understand the role of ZrO2 in these mixed-oxides based catalysts, in situ X-ray absorption spectroscopy has been carried out on the Cu and Zr K-edge. Under reaction conditions, Cu remains metallic, while Zr is present in three types of coordination environment associated with 1) bulk ZrO2, 2) coordinatively saturated and 3) unsaturated Zr(Ⅳ) surface sites. The amount of coordinatively unsaturated Zr surface sites can be quantified by linear combination fit of reference X-Ray absorption near edge structure (XANES) spectra and its amount correlates with CH3OH formation rates, thus indicating the importance of Zr(Ⅳ) Lewis acid surface sites in driving the selectivity toward CH3OH. This finding is consistent with the proposed mechanism, where CO2 is hydrogenated at the interface between the Cu nanoparticles that split H2 and Zr(Ⅳ) surface sites that stabilizes reaction intermediates.展开更多
The electrical conductivity of NaF-AlF3-CaF2-Al2O3-ZrO2 system was studied by a tube-type cell with fixed cell constant. The results show that the electrical conductivity of NaF-AlF3-3%Al2O3-3%CaF2-ZrO2 molten salt sy...The electrical conductivity of NaF-AlF3-CaF2-Al2O3-ZrO2 system was studied by a tube-type cell with fixed cell constant. The results show that the electrical conductivity of NaF-AlF3-3%Al2O3-3%CaF2-ZrO2 molten salt system decreases with increase of ZrO2 content in an interval of 0-5%. The increase of 1%ZrO2 results in a corresponding electrical conductivity decrease of 0.02 S/cm, and the equivalent conductivity increases with the increase of molar ratio of NaF to AlF3. When the temperature increases by 1 °C, the electrical conductivity increases by 0.004 S/cm. At last, the regression equations of electrical conductivity relative to temperature and ZrO2 are obtained by quadratic regression analysis.展开更多
基金the National Natural Science Foundation of China(No.2 0 0 730 16 and 6 0 2 710 2 0 ) ,state 86 3Projects(No.2 0 0 2 AA 30 2 2 0 3) and state 973Projects(No.G19990 6 4 5 0 4 )
文摘Erbium, Ytterbium-codoped ZrO 2 nanoparticles(ZrO 2∶Er 3+ ,Yb 3+ ) were prepared by the sol-emulsion-gel technique. The purpose of the present study is the application of upconversion phosphor in the biological label. In order to make out the mechanism of upconversion under 980 nm excitation the 488 nm pump was used. The influence of temperature on the crystallite phase was studied. The results confirm the upconverted mechanism in ZrO 2∶Er 3+ ,Yb 3+ nanocrystals is due to an energy transfer upconversion(ETU).
基金Project(2003AA332040) supported by the National High Technology Research and Development Program of China
文摘ZrO2-mullite nano-ceramics were fabricated by in-situ controlled crystallizing from SiO2-Al2O3-ZrO2 amorphous bulk. The thermal transformation sequences of the SiO2-Al2O3-ZrO2 amorphous bulk were investigated by X-ray diffraction, infrared spectrum, scanning electron microscope and differential scanning calorimetric. And the mechanical properties of the nano-ceramics were studied. The results show that the bulks are still in amorphous state at 900 ℃ and the t-ZrO2 forms at about 950 ℃ with a faint spinel-like phase which changes into mullite on further heating. ZrO2 and mullite become major phases at 1 100 ℃ and an amount of m-ZrO2 occur at the same time. The sample heated at 950 ℃ for 2 h and then at 1 100 ℃ for 1 h shows very dense and homogenous microstructure with ball-like grains in size of 20-50 nm. With the increase of crystallization temperature up to 1 350 ℃, the grains grow quickly and some grow into lath-shaped grains with major diameter of 5 μm. After two-step treatment the highest micro-hardness, flexural strength and fracture toughness of the samples are 13.72 GPa, 520 MPa and 5.13 MPa·m1/2, respectively.
基金E.L.,K.L.,P.W.,and S.T.are supported by the SCCER-Heat and Energy Storage program
文摘Cu/ZrO2/SiO2 are efficient catalysts for the selective hydrogenation of CO2 to CH3OH. In order to understand the role of ZrO2 in these mixed-oxides based catalysts, in situ X-ray absorption spectroscopy has been carried out on the Cu and Zr K-edge. Under reaction conditions, Cu remains metallic, while Zr is present in three types of coordination environment associated with 1) bulk ZrO2, 2) coordinatively saturated and 3) unsaturated Zr(Ⅳ) surface sites. The amount of coordinatively unsaturated Zr surface sites can be quantified by linear combination fit of reference X-Ray absorption near edge structure (XANES) spectra and its amount correlates with CH3OH formation rates, thus indicating the importance of Zr(Ⅳ) Lewis acid surface sites in driving the selectivity toward CH3OH. This finding is consistent with the proposed mechanism, where CO2 is hydrogenated at the interface between the Cu nanoparticles that split H2 and Zr(Ⅳ) surface sites that stabilizes reaction intermediates.
基金Project (2007CB210305) supported by the National Basic Research Program of ChinaProject (51074045) supported by the National Natural Science Foundation of China
文摘The electrical conductivity of NaF-AlF3-CaF2-Al2O3-ZrO2 system was studied by a tube-type cell with fixed cell constant. The results show that the electrical conductivity of NaF-AlF3-3%Al2O3-3%CaF2-ZrO2 molten salt system decreases with increase of ZrO2 content in an interval of 0-5%. The increase of 1%ZrO2 results in a corresponding electrical conductivity decrease of 0.02 S/cm, and the equivalent conductivity increases with the increase of molar ratio of NaF to AlF3. When the temperature increases by 1 °C, the electrical conductivity increases by 0.004 S/cm. At last, the regression equations of electrical conductivity relative to temperature and ZrO2 are obtained by quadratic regression analysis.