With the frame of the time-dependent local density approximation, an efficient description of the optical response of clusters has been used to study the photo-absorption cross section of Na2 and Na4 clusters. It is s...With the frame of the time-dependent local density approximation, an efficient description of the optical response of clusters has been used to study the photo-absorption cross section of Na2 and Na4 clusters. It is shown that our calculated results are in good agreement with the experiment. In addition, our calculated spectrum for the Na4 cluster is in better agreement with experiment than the GW absorption spectrum.展开更多
Na_(3)V_(2)(PO_(4))_(3)(NVP)cathode material of the sodium ion battery(1 C=117 mAh g-1)has a NASICON-type structure,which not only facilitates the rapid migration of sodium ions,but also has a small volume deformation...Na_(3)V_(2)(PO_(4))_(3)(NVP)cathode material of the sodium ion battery(1 C=117 mAh g-1)has a NASICON-type structure,which not only facilitates the rapid migration of sodium ions,but also has a small volume deformation during sodium ion de-intercalation and the main frame mechanism remains unchanged,and thus is seen as an energy storage material for a wide range of applications,but has a limited electronic conductivity due to its structure.In this paper,NVP cathode materials with finer primary particles are successfully prepared using a simple hydrothermal treatment-assisted sol-gel method.The increased pore size of the NVP materials prepared under the hydrothermal process allows for more active sites and more effective resistance to the volume deformation of sodium ions during insertion/extraction processes,effectively facilitating the diffusion of ions and electrons.The Na_(3)V_(2)(PO_(4))_(3) material obtained by the optimized process exhibited good crystallinity in XRD characterization,as well as superior electrochemical properties in a series of electrochemical tests.A specific capacitance of 106.3 mAh g^(-1) at 0.2 C is demonstrated,compared to 96.5 mAh g^(-1) for Na_(3)V_(2)(PO_(4))_(3) without hydrothermal treatment,and cycling performance is also improved with 93%capacity retention.The calculated sodium ion diffusion coefficient(DNa=5.68×10^(-14))obtained after EIS curve fitting of the improved sample illustrates that the pore structure is beneficial to the performance of the Na_(3)V_(2)(PO_(4))_(3)cathode material.展开更多
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10405025, 10575012, 10435020, and 10535010
文摘With the frame of the time-dependent local density approximation, an efficient description of the optical response of clusters has been used to study the photo-absorption cross section of Na2 and Na4 clusters. It is shown that our calculated results are in good agreement with the experiment. In addition, our calculated spectrum for the Na4 cluster is in better agreement with experiment than the GW absorption spectrum.
文摘Na_(3)V_(2)(PO_(4))_(3)(NVP)cathode material of the sodium ion battery(1 C=117 mAh g-1)has a NASICON-type structure,which not only facilitates the rapid migration of sodium ions,but also has a small volume deformation during sodium ion de-intercalation and the main frame mechanism remains unchanged,and thus is seen as an energy storage material for a wide range of applications,but has a limited electronic conductivity due to its structure.In this paper,NVP cathode materials with finer primary particles are successfully prepared using a simple hydrothermal treatment-assisted sol-gel method.The increased pore size of the NVP materials prepared under the hydrothermal process allows for more active sites and more effective resistance to the volume deformation of sodium ions during insertion/extraction processes,effectively facilitating the diffusion of ions and electrons.The Na_(3)V_(2)(PO_(4))_(3) material obtained by the optimized process exhibited good crystallinity in XRD characterization,as well as superior electrochemical properties in a series of electrochemical tests.A specific capacitance of 106.3 mAh g^(-1) at 0.2 C is demonstrated,compared to 96.5 mAh g^(-1) for Na_(3)V_(2)(PO_(4))_(3) without hydrothermal treatment,and cycling performance is also improved with 93%capacity retention.The calculated sodium ion diffusion coefficient(DNa=5.68×10^(-14))obtained after EIS curve fitting of the improved sample illustrates that the pore structure is beneficial to the performance of the Na_(3)V_(2)(PO_(4))_(3)cathode material.