Yb^3+/Er^3+co-doped Na5Lu9F32 single crystals used as a spectral up-converter to improve the power conversion efficiency of perovskite solar cells are prepared via an improved Bridgman approach. Green and red up-conve...Yb^3+/Er^3+co-doped Na5Lu9F32 single crystals used as a spectral up-converter to improve the power conversion efficiency of perovskite solar cells are prepared via an improved Bridgman approach. Green and red up-conversion(UC) emissions under the excitation of near-infrared(NIR) bands of 900–1000 nm and1400–1600 nm can be observed. The effectiveness of the prepared materials as a spectral converter is verified by the enhancement of power conversion efficiency of perovskite solar cells. The sample with a UC layer is 15.5%more efficient in converting sunlight to electricity compared to the UC layer-free sample due to the absorption of sunlight in the NIR range. The results suggest the synthesized Yb^3+/Er^3+co-doped Na5Lu9F32 single crystals are suitable for enhancing the performance of perovskite solar cells.展开更多
A 0.1 mol.% CoF2-doped Na5Lu9F(32)single crystal with high quality in the size of -φ10 mm×100 mm was grown by the Bridgman method. Three peaks located at 504, 544, and 688 nm and a broad band in the range of 1...A 0.1 mol.% CoF2-doped Na5Lu9F(32)single crystal with high quality in the size of -φ10 mm×100 mm was grown by the Bridgman method. Three peaks located at 504, 544, and 688 nm and a broad band in the range of 1200–1600 nm centered at 1472 nm were observed in the absorption spectra. The absorption peak position suggests cobalt ions in the divalent state in the grown crystal. Moreover, the cobalt ions are confirmed to locate in the distorted cubic crystal structure. Upon excitation of 500 nm light, a sharp emission peak at 747 nm ascribed to the ^2T2(H1) →^4A2(F) transition was observed for the crystal. The Co^2+-doped Na5Lu9F(32)crystal shows a potentially promising material for the application of a passively Q-switched laser operating in the near-infrared range.展开更多
基金The National Natural Science Foundation of China(Nos.51772159,51472125)the Natural Science Foundation of Zhejiang Province(No.LZ17E020001)K.C.Wong Magna Fund in Ningbo University
基金supported by the National Natural Science Foundation of China(No.51772159)the Natural Science Foundation of Zhejiang Province(No.LZ17E020001)K.C.Wong Magna Fund in Ningbo University
文摘Yb^3+/Er^3+co-doped Na5Lu9F32 single crystals used as a spectral up-converter to improve the power conversion efficiency of perovskite solar cells are prepared via an improved Bridgman approach. Green and red up-conversion(UC) emissions under the excitation of near-infrared(NIR) bands of 900–1000 nm and1400–1600 nm can be observed. The effectiveness of the prepared materials as a spectral converter is verified by the enhancement of power conversion efficiency of perovskite solar cells. The sample with a UC layer is 15.5%more efficient in converting sunlight to electricity compared to the UC layer-free sample due to the absorption of sunlight in the NIR range. The results suggest the synthesized Yb^3+/Er^3+co-doped Na5Lu9F32 single crystals are suitable for enhancing the performance of perovskite solar cells.
基金supported by the National Natural Science Foundation of China(Nos.51772159,51472125,11504188,and U1504626)the Natural Science Foundation of Zhejiang Province(No.LZ17E020001)K.C.Wong Magna Fund in Ningbo University
文摘A 0.1 mol.% CoF2-doped Na5Lu9F(32)single crystal with high quality in the size of -φ10 mm×100 mm was grown by the Bridgman method. Three peaks located at 504, 544, and 688 nm and a broad band in the range of 1200–1600 nm centered at 1472 nm were observed in the absorption spectra. The absorption peak position suggests cobalt ions in the divalent state in the grown crystal. Moreover, the cobalt ions are confirmed to locate in the distorted cubic crystal structure. Upon excitation of 500 nm light, a sharp emission peak at 747 nm ascribed to the ^2T2(H1) →^4A2(F) transition was observed for the crystal. The Co^2+-doped Na5Lu9F(32)crystal shows a potentially promising material for the application of a passively Q-switched laser operating in the near-infrared range.