A combination of sodium borohydride and a catalytic amount of indium(Ⅲ) chloride in acetonitrile reduces imines formed in-situ from aldehydes and amines to the corresponding functionalised secondary and tertiary am...A combination of sodium borohydride and a catalytic amount of indium(Ⅲ) chloride in acetonitrile reduces imines formed in-situ from aldehydes and amines to the corresponding functionalised secondary and tertiary amines in moderate to good yields. Noteworthy is that highly chemoselective reactions were achieved in the presence of other functional groups such as halogens, carbon-carbon double bonds and hydroxyl groups.展开更多
?β-Unsaturated amides with various substitution pattems at the carbon-carbon double And and nitrogen atom can be reduced to the corresponding saturated amides with high selectivity and yields with NaBH4/BiCl3 system.
The preparation of Cu nanoparticles by the aqueous solution reduction method was investigated. The effects of different reaction parameters on the preparation of Cu nanoparticles were studied. The optimum conditions f...The preparation of Cu nanoparticles by the aqueous solution reduction method was investigated. The effects of different reaction parameters on the preparation of Cu nanoparticles were studied. The optimum conditions for preparing well-dispersed nanoparticles were found as follows: 0.4 mol/L NaBH4 was added into solution containing 0.2 mol/L Cu2+, 1.0% gelatin dispersant in mass fraction, and 1.2 mol/L NH3?H2O at pH 12 and 313 K. In addition, a series of experiments were performed to discover the reaction process. NH3?H2O was found to be able to modulate the reaction process. At pH=10, Cu2+ was transformed to Cu(NH3)42+ as precursor after the addition of NH3?H2O, and then Cu(NH3)42+ was reduced by NaBH4 solution. At pH=12, Cu2+ was transformed to Cu(OH)2 as precursor after the addition of NH3?H2O, and Cu(OH)2 was then reduced by NaBH4 solution.展开更多
文摘A combination of sodium borohydride and a catalytic amount of indium(Ⅲ) chloride in acetonitrile reduces imines formed in-situ from aldehydes and amines to the corresponding functionalised secondary and tertiary amines in moderate to good yields. Noteworthy is that highly chemoselective reactions were achieved in the presence of other functional groups such as halogens, carbon-carbon double bonds and hydroxyl groups.
文摘?β-Unsaturated amides with various substitution pattems at the carbon-carbon double And and nitrogen atom can be reduced to the corresponding saturated amides with high selectivity and yields with NaBH4/BiCl3 system.
文摘The preparation of Cu nanoparticles by the aqueous solution reduction method was investigated. The effects of different reaction parameters on the preparation of Cu nanoparticles were studied. The optimum conditions for preparing well-dispersed nanoparticles were found as follows: 0.4 mol/L NaBH4 was added into solution containing 0.2 mol/L Cu2+, 1.0% gelatin dispersant in mass fraction, and 1.2 mol/L NH3?H2O at pH 12 and 313 K. In addition, a series of experiments were performed to discover the reaction process. NH3?H2O was found to be able to modulate the reaction process. At pH=10, Cu2+ was transformed to Cu(NH3)42+ as precursor after the addition of NH3?H2O, and then Cu(NH3)42+ was reduced by NaBH4 solution. At pH=12, Cu2+ was transformed to Cu(OH)2 as precursor after the addition of NH3?H2O, and Cu(OH)2 was then reduced by NaBH4 solution.