The reduction mechanism of Ir in the NaCl-KCl-IrCl3 molten salt was investigated by cyclic voltammetry and chronopotentiometry, and Ir film was deposited effectively on platinum in potentiostatic mode. The morphology ...The reduction mechanism of Ir in the NaCl-KCl-IrCl3 molten salt was investigated by cyclic voltammetry and chronopotentiometry, and Ir film was deposited effectively on platinum in potentiostatic mode. The morphology and constitution of Ir film were examined by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). It is found that the reduction mechanism of Ir(III) is a three-electron step and electro reaction is a reversible diffusion controlled process; the diffusion coefficients of Ir(III) at 1083, 1113, 1143 and 1183 K are 1.56×10-4, 2.23×10-4, 2.77×10-4 and 4.40×10-4 cm2/s, respectively, while the activation energy of the electrode reaction is 102.95 kJ/mol. The compacted Ir film reveals that the applied potential greatly affects the deposition of Ir, the thickness of Ir film deposited at the potential of reduction peak is the highest, the temperature of the molten salt also exerts an influence on deposition, the film formed at a lower temperature is thinner, but more micropores would occur on film when the temperature went too high.展开更多
The hot corrosion behaviors of Ni–16Cr–xAl(x=4.5%, 6.8%, 9.0%, mass fraction) based alloys in Na2SO4–25% NaCl molten salts at 600 °C were investigated. The effects of pre-oxidation and Al content on the resi...The hot corrosion behaviors of Ni–16Cr–xAl(x=4.5%, 6.8%, 9.0%, mass fraction) based alloys in Na2SO4–25% NaCl molten salts at 600 °C were investigated. The effects of pre-oxidation and Al content on the resistance to hot corrosion were examined. The hot corrosion resistance of Ni–16Cr–xAl based alloy with Al addition from 4.5% to 9.0% increases with increasing Al content. The alloy with Al content of 9.0% shows the highest hot corrosion resistance among the examined alloys because more β–NiAl phases are obtained to sustain the Al2O3 scale repaired during hot corrosion. Pre-oxidized specimens have a superior hot corrosion resistance compared with the as-cast specimens, due to a protective oxide scale formed after pre-treatment.展开更多
The effects of nitrogen on physiological and biochemical characteristics of potato cultivar Zihuabai under NaCl stress were studied in culture condition.The results show that,under NaCl stress,the contents of proline,...The effects of nitrogen on physiological and biochemical characteristics of potato cultivar Zihuabai under NaCl stress were studied in culture condition.The results show that,under NaCl stress,the contents of proline,chlorophyll and protein and root system vitality first increase and then decrease with the increase of nitrogen level,and reach the top under 4.17 mmol/L NH4NO3 level.Wherein,the contents of chlorophyll,protein and root system vitality are respectively 69.88%,13.07% and 59.29% higher than that of the control under 4.17 mmol/L NH4NO3 level;the activities of superoxide dismutase(SOD)and peroxidase(POD)increase generally under NaCl stress with the increase of nitrogen level,and reach the peaks [111.83 U/g and 25.467 U/(g·min)],which are 37.73% and 35.46% higher than that of control,at 6.25 mmol/L NH4NO3 level.展开更多
The electro-reduction of chromium oxide(Cr2O3) was investigated in an equimolar mixture of CaCl2-NaCl molten salt at 800℃ for developing a more efficient process for chromium preparation. Cyclic voltammetry and pot...The electro-reduction of chromium oxide(Cr2O3) was investigated in an equimolar mixture of CaCl2-NaCl molten salt at 800℃ for developing a more efficient process for chromium preparation. Cyclic voltammetry and potentiostatic electrolysis were used to study the electro-reduction of the Cr2O3-loaded metallic cavity electrode. In addition, a number of parameters affecting the rate and extent of Cr2O3 electrolysis were considered to better understand the electrolysis process. The results demonstrate that CaCl2-NaCl molten salt is applicable for preparing Cr directly from Cr2O3 and the electrolysis parameters exert great influence on the cathode product. Under optimal experimental conditions, nodular Cr with an oxygen content of 0.5%(mass fraction) was obtained without any chromium carbides detected by XRD. Furthermore, the relatively high solubility of CaO and quite rapid crystal growth result in the formation of large platelet CaCr2O4, and the addition of NaCl to CaCl2 results in several variations on the electrolysis process and the product morphology from pure CaCl2 molten salt.展开更多
A novel molten salt extraction process consisting of chlorination roasting and molten salt electrolysis was proposed to develop a more efficient and environmental friendly technology for recovering lead from spent lea...A novel molten salt extraction process consisting of chlorination roasting and molten salt electrolysis was proposed to develop a more efficient and environmental friendly technology for recovering lead from spent lead acid batteries(LABs).The feasibility of this process was firstly assessed based on thermodynamics fundamentals.The electrochemical behavior of Pb(II)on a tungsten electrode in the eutectic NaCl−KCl melts at 700℃ was then investigated in detail by transient electrochemical techniques.The results indicated that the reduction reaction of Pb(II)in NaCl−KCl melts was a one-step process exchanging two electrons,and it was determined to be a quasi-reversible diffusion-controlled process.Finally,potentiostatic electrolysis was carried out at−0.6 V(vs Ag/AgCl)in the NaCl−KCl−PbCl2 melts,and the obtained cathodic product was identified as pure Pb by X-ray diffraction analysis.This investigation demonstrated that it is practically feasible to produce pure Pb metal by electrochemical reduction of PbCl2 in eutectic NaCl−KCl melts,and has provided important fundamental for the further study on lead recovery from spent LABs via molten salt extraction process.展开更多
A process comprising selective chlorination and molten salt electrolysis was proposed to develop an efficient and environmental-friendly technology for zinc recovery from metallurgical dusts.The theoretical feasibilit...A process comprising selective chlorination and molten salt electrolysis was proposed to develop an efficient and environmental-friendly technology for zinc recovery from metallurgical dusts.The theoretical feasibility of this technology was firstly estimated based on thermodynamic fundamentals.Subsequently,the electrochemical behavior of Zn^(2+)on tungsten electrode was investigated in molten NaCl-KCl eutectic at 973 K by many electrochemical transient methods.The results showed that the reduction of Zn^(2+)on tungsten electrode was found to be a one-step process exchanging two electrons with the initial reduction potential of-0.74 V(vs Ag/AgCl),and the electrode process was considered as quasi-reversible and controlled by diffusion.The diffusion coefficient of Zn^(2+)ions in the melts was determined in the order of 10^(-5)cm^(2)/s.Finally,the electrolytic preparation of zinc was carried out by potentiostatic electrolysis in molten NaCl-KCl-ZnCl_(2)eutectic at-1.6 V(vs Ag/AgCl).Spheroidic granular metal with silver-white luster was attained after electrolysis for 9.5 h,and identified as pure Zn.The present study confirms that it is practically feasible to extract pure zinc metal by direct electrolysis of ZnCl_(2)in molten NaCl-KCl eutectic,and provides a valuable theoretical reference for the efficient recovery of zinc from metallurgical dusts.展开更多
Abstract Many species of microalga Dunaliella exhibit a remarkable tolerance to salinity and are therefore ideal for probing the effects of salinity. In this work, we assessed the effects of NaC1 stress on the growth,...Abstract Many species of microalga Dunaliella exhibit a remarkable tolerance to salinity and are therefore ideal for probing the effects of salinity. In this work, we assessed the effects of NaC1 stress on the growth, activity and mRNA level of carbon and nitrogen metabolism enzymes of D. viridis. The alga could grow over a salinity range of 0.44 mol L-t to 3.00 mol L-1 NaCI, but the most rapid growth was observed at 1.00molL-1NaC1, followed by 2.00 molL-l NaC1. Paralleling these growth patterns, the highest initial and total Rubisco activities were detected in the presence of 1.00molL-t NaC1, decreasing to 37.33% and 26.39% of those values, re- spectively, in the presence of 3.00 mol L-1 NaC1, respectively. However, the highest extracellular carbonic anhydrase (CA) activity was measured in the presence of 2.00molL-1 NaC1, followed by 1.00molL-1NaC1. Different from the two carbon enzymes, nitrate reductase (NR) activity showed a slight change under different NaC1 concentrations. At the transcriptional level, the mRNAs of Rubisco large subunit (rbcL), and small subunit (rbcS), attained their highest abundances in the presence of 1.00 and 2.00molL-1 NaC1, respectively. The CA mRNA accumulation was induced from 0.44molL ~ to 3.00molL-1 NaC1, but the NR mRNA showed the decreasing tendency with the increasing salinity. In conclusion, the growth and carbon fixation enzyme of Rubisco displayed similar tendency in response to NaC1 stress, CA was proved be salt-inducible within a certain salinity range and NR showed the least effect by NaC1 in D. viridis.展开更多
A novel strain of Micrococcus sp.DUT_AHX,which was isolated from the sludge of a nitrobenzene(NB)-manufacturing plant and could utilize NB as the sole carbon source,was identified on the basis of physiological and bio...A novel strain of Micrococcus sp.DUT_AHX,which was isolated from the sludge of a nitrobenzene(NB)-manufacturing plant and could utilize NB as the sole carbon source,was identified on the basis of physiological and biochemical tests and 16S ribosomal DNA(rDNA)sequence analysis.It can grow at the temperature up to 40℃or in the presence of NaCl concentration up to 12 g/L in Luria-Bertani(LB)medium.The optimal degradation conditions are as follows:temperature 37℃,pH 7.0,and shaking speed 150 r/min.The strain involves a partial reductive pathway due to the release of ammonia and can also utilize 2-aminophenol as the sole carbon source.Furthermore,the enzyme activity tests show that crude extracts of NB-grown strain DUT_AHX mainly contain 2-aminophenol 1,6-dioxygenase activity.The exploitation of salt-tolerant bacteria will be a remarkable improvement in NB bioremediation and wastewater treatment at high salinity and high temperature.展开更多
The paper aimed to investigate the growth of seedlings of three species of Cassia (C tora, C. sophera and C occidentalis) at different concentrations of salinity (NaC1) and pH treatments. All the species showed th...The paper aimed to investigate the growth of seedlings of three species of Cassia (C tora, C. sophera and C occidentalis) at different concentrations of salinity (NaC1) and pH treatments. All the species showed the highest seedling length under control condition, and with the increase of salinity, C occidentalis showed the highest sensitivity. The seedling length of C tora at 0.05 M NaCI significantly (P = 0.05) decreased to 5.71 cm, and further increase of salinity to 0.1 M, the seedling length was decreased to less than the value of 0.05 M NaC1 treatment and one-third (2.15 cm) of that of control (6.92 cm). Seeds of all the species failed to germinate at 0.5 M NaC1. Scarified seeds of C. sophera and C occidentalis increased seedling length. The highest seedling length was in C. sophera, followed by C. tora and C. occidentalis. All the species showed significant decrease (P 〈 0.05) of fresh weight with the increase of salinity; scarification of seeds in C. occidentalis and C. sophera showed higher fresh weight than those of without scarification. Experiments at different pH levels did not show any significant (P = 0.05) change in seedling length, except C. sophera, while at acidic pH, both seedling length and dry weight were significantly (P 〈 0.05) decreased.展开更多
A novel saline-tolerant bacterium Bacillus circulans WZ-12 was evaluated for its potential to degrade four chlorinated hydrocarbons under saline conditions. CHECl2 was effectively degraded by Bacillus circulans WZ-12 ...A novel saline-tolerant bacterium Bacillus circulans WZ-12 was evaluated for its potential to degrade four chlorinated hydrocarbons under saline conditions. CHECl2 was effectively degraded by Bacillus circulans WZ-12 cells in the medium containing NaCl concentrations ranging from 5 g.L^-1 to 10 g-L^-1, and the maximum degradation efficiency (85%) was achieved at NaCl concentration of 10 g.L^-1. Similarly, Bacillus circulans WZ-12 was able to degrade CH2BrCl, C2H4Cl2, and C2H2Cl2 in the presence of 10 g NaCl per liter within 24 h. Cells of Bacillus circulans WZ-12 grown in minimal salt medium contained low levels of glycine betaine (GB), but GB levels were 3- to 5-fold higher in cells grown in media with high salt. Kinetic analysis revealed that biodegradation of the four chlorinated hydrocarbons was concentration dependent and a linear inverse correlation (R2= 0.85-0.94) was observed between the rate of biodegradation (V) and salt concentration from 5 g.L〈 to 60 g.L-1. The growing cells (in minimal salt medium) degraded approximately 50% of the CH2C12 within 24 h, whereas the resting cells (in physiological saline) degraded only 25% of the CH2C12 within 24 h and were inactive after 36 h cultivation. Biodegradation could be repeatedly performed for more than 192 h with more than 50% removal efficiency. Bacillus circulans WZ-12 grows well in an aqueous/oil system, hence, it is effective for the treatment of industriai efflu- ents that contain chlorinated hydrocarbons with high salt concentrations.展开更多
文摘The reduction mechanism of Ir in the NaCl-KCl-IrCl3 molten salt was investigated by cyclic voltammetry and chronopotentiometry, and Ir film was deposited effectively on platinum in potentiostatic mode. The morphology and constitution of Ir film were examined by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). It is found that the reduction mechanism of Ir(III) is a three-electron step and electro reaction is a reversible diffusion controlled process; the diffusion coefficients of Ir(III) at 1083, 1113, 1143 and 1183 K are 1.56×10-4, 2.23×10-4, 2.77×10-4 and 4.40×10-4 cm2/s, respectively, while the activation energy of the electrode reaction is 102.95 kJ/mol. The compacted Ir film reveals that the applied potential greatly affects the deposition of Ir, the thickness of Ir film deposited at the potential of reduction peak is the highest, the temperature of the molten salt also exerts an influence on deposition, the film formed at a lower temperature is thinner, but more micropores would occur on film when the temperature went too high.
基金Project (2009AA032601) supported by the National High-tech Research and Development Program of China
文摘The hot corrosion behaviors of Ni–16Cr–xAl(x=4.5%, 6.8%, 9.0%, mass fraction) based alloys in Na2SO4–25% NaCl molten salts at 600 °C were investigated. The effects of pre-oxidation and Al content on the resistance to hot corrosion were examined. The hot corrosion resistance of Ni–16Cr–xAl based alloy with Al addition from 4.5% to 9.0% increases with increasing Al content. The alloy with Al content of 9.0% shows the highest hot corrosion resistance among the examined alloys because more β–NiAl phases are obtained to sustain the Al2O3 scale repaired during hot corrosion. Pre-oxidized specimens have a superior hot corrosion resistance compared with the as-cast specimens, due to a protective oxide scale formed after pre-treatment.
基金Supported by National Key Technology Research and Development Program(2007BAD49B03-1)~~
文摘The effects of nitrogen on physiological and biochemical characteristics of potato cultivar Zihuabai under NaCl stress were studied in culture condition.The results show that,under NaCl stress,the contents of proline,chlorophyll and protein and root system vitality first increase and then decrease with the increase of nitrogen level,and reach the top under 4.17 mmol/L NH4NO3 level.Wherein,the contents of chlorophyll,protein and root system vitality are respectively 69.88%,13.07% and 59.29% higher than that of the control under 4.17 mmol/L NH4NO3 level;the activities of superoxide dismutase(SOD)and peroxidase(POD)increase generally under NaCl stress with the increase of nitrogen level,and reach the peaks [111.83 U/g and 25.467 U/(g·min)],which are 37.73% and 35.46% higher than that of control,at 6.25 mmol/L NH4NO3 level.
基金Project(2013CB632600)supported by the National Basic Research Program of ChinaProjects(21376251,21406233)supported by the National Natural Science Foundation of ChinaProject supported by the Fund of Hubei Zhenhua Chemical Co.,Ltd.,China
文摘The electro-reduction of chromium oxide(Cr2O3) was investigated in an equimolar mixture of CaCl2-NaCl molten salt at 800℃ for developing a more efficient process for chromium preparation. Cyclic voltammetry and potentiostatic electrolysis were used to study the electro-reduction of the Cr2O3-loaded metallic cavity electrode. In addition, a number of parameters affecting the rate and extent of Cr2O3 electrolysis were considered to better understand the electrolysis process. The results demonstrate that CaCl2-NaCl molten salt is applicable for preparing Cr directly from Cr2O3 and the electrolysis parameters exert great influence on the cathode product. Under optimal experimental conditions, nodular Cr with an oxygen content of 0.5%(mass fraction) was obtained without any chromium carbides detected by XRD. Furthermore, the relatively high solubility of CaO and quite rapid crystal growth result in the formation of large platelet CaCr2O4, and the addition of NaCl to CaCl2 results in several variations on the electrolysis process and the product morphology from pure CaCl2 molten salt.
基金Project(gxyq2018012)supported by the Developing Program Foundation for the Excellent Youth Talents of Higher Education of Anhui Province,ChinaProject(SKF19-05)supported by Foundation of Anhui Province Key Laboratory of Metallurgical Engineering&Resources Recycling,ChinaProjects(51904003,U1703130)supported by the National Natural Science Foundation of China。
文摘A novel molten salt extraction process consisting of chlorination roasting and molten salt electrolysis was proposed to develop a more efficient and environmental friendly technology for recovering lead from spent lead acid batteries(LABs).The feasibility of this process was firstly assessed based on thermodynamics fundamentals.The electrochemical behavior of Pb(II)on a tungsten electrode in the eutectic NaCl−KCl melts at 700℃ was then investigated in detail by transient electrochemical techniques.The results indicated that the reduction reaction of Pb(II)in NaCl−KCl melts was a one-step process exchanging two electrons,and it was determined to be a quasi-reversible diffusion-controlled process.Finally,potentiostatic electrolysis was carried out at−0.6 V(vs Ag/AgCl)in the NaCl−KCl−PbCl2 melts,and the obtained cathodic product was identified as pure Pb by X-ray diffraction analysis.This investigation demonstrated that it is practically feasible to produce pure Pb metal by electrochemical reduction of PbCl2 in eutectic NaCl−KCl melts,and has provided important fundamental for the further study on lead recovery from spent LABs via molten salt extraction process.
基金the financial support from the Natural Science Foundation of Anhui Province, China (No. 2008085ME170)the Anhui Special Support Plan, China (No. T000609)the National Natural Science Foundation of China (No. 51204002
文摘A process comprising selective chlorination and molten salt electrolysis was proposed to develop an efficient and environmental-friendly technology for zinc recovery from metallurgical dusts.The theoretical feasibility of this technology was firstly estimated based on thermodynamic fundamentals.Subsequently,the electrochemical behavior of Zn^(2+)on tungsten electrode was investigated in molten NaCl-KCl eutectic at 973 K by many electrochemical transient methods.The results showed that the reduction of Zn^(2+)on tungsten electrode was found to be a one-step process exchanging two electrons with the initial reduction potential of-0.74 V(vs Ag/AgCl),and the electrode process was considered as quasi-reversible and controlled by diffusion.The diffusion coefficient of Zn^(2+)ions in the melts was determined in the order of 10^(-5)cm^(2)/s.Finally,the electrolytic preparation of zinc was carried out by potentiostatic electrolysis in molten NaCl-KCl-ZnCl_(2)eutectic at-1.6 V(vs Ag/AgCl).Spheroidic granular metal with silver-white luster was attained after electrolysis for 9.5 h,and identified as pure Zn.The present study confirms that it is practically feasible to extract pure zinc metal by direct electrolysis of ZnCl_(2)in molten NaCl-KCl eutectic,and provides a valuable theoretical reference for the efficient recovery of zinc from metallurgical dusts.
基金funded by the Project of Science and Technology Innovation Team of Zhejiang Province (2010R50025-25)sponsored by the K. C. Wong Magna Fund
文摘Abstract Many species of microalga Dunaliella exhibit a remarkable tolerance to salinity and are therefore ideal for probing the effects of salinity. In this work, we assessed the effects of NaC1 stress on the growth, activity and mRNA level of carbon and nitrogen metabolism enzymes of D. viridis. The alga could grow over a salinity range of 0.44 mol L-t to 3.00 mol L-1 NaCI, but the most rapid growth was observed at 1.00molL-1NaC1, followed by 2.00 molL-l NaC1. Paralleling these growth patterns, the highest initial and total Rubisco activities were detected in the presence of 1.00molL-t NaC1, decreasing to 37.33% and 26.39% of those values, re- spectively, in the presence of 3.00 mol L-1 NaC1, respectively. However, the highest extracellular carbonic anhydrase (CA) activity was measured in the presence of 2.00molL-1 NaC1, followed by 1.00molL-1NaC1. Different from the two carbon enzymes, nitrate reductase (NR) activity showed a slight change under different NaC1 concentrations. At the transcriptional level, the mRNAs of Rubisco large subunit (rbcL), and small subunit (rbcS), attained their highest abundances in the presence of 1.00 and 2.00molL-1 NaC1, respectively. The CA mRNA accumulation was induced from 0.44molL ~ to 3.00molL-1 NaC1, but the NR mRNA showed the decreasing tendency with the increasing salinity. In conclusion, the growth and carbon fixation enzyme of Rubisco displayed similar tendency in response to NaC1 stress, CA was proved be salt-inducible within a certain salinity range and NR showed the least effect by NaC1 in D. viridis.
文摘A novel strain of Micrococcus sp.DUT_AHX,which was isolated from the sludge of a nitrobenzene(NB)-manufacturing plant and could utilize NB as the sole carbon source,was identified on the basis of physiological and biochemical tests and 16S ribosomal DNA(rDNA)sequence analysis.It can grow at the temperature up to 40℃or in the presence of NaCl concentration up to 12 g/L in Luria-Bertani(LB)medium.The optimal degradation conditions are as follows:temperature 37℃,pH 7.0,and shaking speed 150 r/min.The strain involves a partial reductive pathway due to the release of ammonia and can also utilize 2-aminophenol as the sole carbon source.Furthermore,the enzyme activity tests show that crude extracts of NB-grown strain DUT_AHX mainly contain 2-aminophenol 1,6-dioxygenase activity.The exploitation of salt-tolerant bacteria will be a remarkable improvement in NB bioremediation and wastewater treatment at high salinity and high temperature.
文摘The paper aimed to investigate the growth of seedlings of three species of Cassia (C tora, C. sophera and C occidentalis) at different concentrations of salinity (NaC1) and pH treatments. All the species showed the highest seedling length under control condition, and with the increase of salinity, C occidentalis showed the highest sensitivity. The seedling length of C tora at 0.05 M NaCI significantly (P = 0.05) decreased to 5.71 cm, and further increase of salinity to 0.1 M, the seedling length was decreased to less than the value of 0.05 M NaC1 treatment and one-third (2.15 cm) of that of control (6.92 cm). Seeds of all the species failed to germinate at 0.5 M NaC1. Scarified seeds of C. sophera and C occidentalis increased seedling length. The highest seedling length was in C. sophera, followed by C. tora and C. occidentalis. All the species showed significant decrease (P 〈 0.05) of fresh weight with the increase of salinity; scarification of seeds in C. occidentalis and C. sophera showed higher fresh weight than those of without scarification. Experiments at different pH levels did not show any significant (P = 0.05) change in seedling length, except C. sophera, while at acidic pH, both seedling length and dry weight were significantly (P 〈 0.05) decreased.
基金Supported by the National Natural Science Foundation of China (20977087, 20976165), Zhejiang Provincial Key Science and Technology Project of China (2011C13023), and Zhejiang Provincial Natural Science Foundation of China (Y5090155, Y5090054).
文摘A novel saline-tolerant bacterium Bacillus circulans WZ-12 was evaluated for its potential to degrade four chlorinated hydrocarbons under saline conditions. CHECl2 was effectively degraded by Bacillus circulans WZ-12 cells in the medium containing NaCl concentrations ranging from 5 g.L^-1 to 10 g-L^-1, and the maximum degradation efficiency (85%) was achieved at NaCl concentration of 10 g.L^-1. Similarly, Bacillus circulans WZ-12 was able to degrade CH2BrCl, C2H4Cl2, and C2H2Cl2 in the presence of 10 g NaCl per liter within 24 h. Cells of Bacillus circulans WZ-12 grown in minimal salt medium contained low levels of glycine betaine (GB), but GB levels were 3- to 5-fold higher in cells grown in media with high salt. Kinetic analysis revealed that biodegradation of the four chlorinated hydrocarbons was concentration dependent and a linear inverse correlation (R2= 0.85-0.94) was observed between the rate of biodegradation (V) and salt concentration from 5 g.L〈 to 60 g.L-1. The growing cells (in minimal salt medium) degraded approximately 50% of the CH2C12 within 24 h, whereas the resting cells (in physiological saline) degraded only 25% of the CH2C12 within 24 h and were inactive after 36 h cultivation. Biodegradation could be repeatedly performed for more than 192 h with more than 50% removal efficiency. Bacillus circulans WZ-12 grows well in an aqueous/oil system, hence, it is effective for the treatment of industriai efflu- ents that contain chlorinated hydrocarbons with high salt concentrations.