Sr0.6 Ba0.4 Nb2 O6 micro-rods are prepared by the molten-salt method with K2 SO4,KCl-K2 SO4,and KCl as fluxes.It reveals that the Sr0.6 Ba0.4 Nb2 O6 synthesized with KCl as a flux exhibits a single phase with tetragon...Sr0.6 Ba0.4 Nb2 O6 micro-rods are prepared by the molten-salt method with K2 SO4,KCl-K2 SO4,and KCl as fluxes.It reveals that the Sr0.6 Ba0.4 Nb2 O6 synthesized with KCl as a flux exhibits a single phase with tetragonal tungsten bronze structure.The measurement of X-ray diffraction indicates that the Sr0.6 Ba0.4 Nb2 O6 micro-rods synthesized at 1 300℃are anisotropic.The morphology of the powers is examined by transmission electron microscope.It reveals that the length-diameter ratio of Sr0.6 Ba0.4 Nb2 O6 micro-rods increases with increasing annealing temperature from 900℃to 1 300℃.At 1 300℃,the rod possesses a large length-diameter ratio of 8∶1.Moreover,the analysis of the piezoelectric properties of single micro-rods using apiezo-response force microscope indicates that the domains of the material are arranged along its radial direction.展开更多
In this research the effect of cerium dopingon corrosion behavior of Ni-10 Cu-11 Fe-6 Al(wt%) alloy as a novel inert anode in titanium electrolytic production was investigated. The samples, including un-doped and Ce-d...In this research the effect of cerium dopingon corrosion behavior of Ni-10 Cu-11 Fe-6 Al(wt%) alloy as a novel inert anode in titanium electrolytic production was investigated. The samples, including un-doped and Ce-doped nickel-based alloys, were prepared using vacuum induction melting(VIM) process and then exposed to the electrolysis in molten calcium chloride at 900C at à1.6 V versus graphite reference electrode for different immersion time. The surface and cross-section of the samples were characterized using scanning electron microscopy(SEM), and their electrochemical behavior was investigated by electrochemical impedance spectroscopy(EIS). The results show that the un-doped samples have greater number of voids and porosities as compared to that of the 0.0064 wt% Ce-doped samples(as the optimum content of cerium in the alloy). Thus, the nickel-based alloy becomes less sensitive to the pitting by addition of cerium. The corrosion penetration depth reaches about 244 mm after 16 h of electrolysis in the un-doped sample, while was approximately 103 mm for the 0.0064 wt% Ce-doped sample, which is an indication that the corrosion penetration depth decreases by adding small amounts of Ce.展开更多
基金supported by the National Natural Science Foundation of China(No.11475086)
文摘Sr0.6 Ba0.4 Nb2 O6 micro-rods are prepared by the molten-salt method with K2 SO4,KCl-K2 SO4,and KCl as fluxes.It reveals that the Sr0.6 Ba0.4 Nb2 O6 synthesized with KCl as a flux exhibits a single phase with tetragonal tungsten bronze structure.The measurement of X-ray diffraction indicates that the Sr0.6 Ba0.4 Nb2 O6 micro-rods synthesized at 1 300℃are anisotropic.The morphology of the powers is examined by transmission electron microscope.It reveals that the length-diameter ratio of Sr0.6 Ba0.4 Nb2 O6 micro-rods increases with increasing annealing temperature from 900℃to 1 300℃.At 1 300℃,the rod possesses a large length-diameter ratio of 8∶1.Moreover,the analysis of the piezoelectric properties of single micro-rods using apiezo-response force microscope indicates that the domains of the material are arranged along its radial direction.
文摘In this research the effect of cerium dopingon corrosion behavior of Ni-10 Cu-11 Fe-6 Al(wt%) alloy as a novel inert anode in titanium electrolytic production was investigated. The samples, including un-doped and Ce-doped nickel-based alloys, were prepared using vacuum induction melting(VIM) process and then exposed to the electrolysis in molten calcium chloride at 900C at à1.6 V versus graphite reference electrode for different immersion time. The surface and cross-section of the samples were characterized using scanning electron microscopy(SEM), and their electrochemical behavior was investigated by electrochemical impedance spectroscopy(EIS). The results show that the un-doped samples have greater number of voids and porosities as compared to that of the 0.0064 wt% Ce-doped samples(as the optimum content of cerium in the alloy). Thus, the nickel-based alloy becomes less sensitive to the pitting by addition of cerium. The corrosion penetration depth reaches about 244 mm after 16 h of electrolysis in the un-doped sample, while was approximately 103 mm for the 0.0064 wt% Ce-doped sample, which is an indication that the corrosion penetration depth decreases by adding small amounts of Ce.