Aluminum-based metal matrix composites (MMCs) are considered in several technological applications owing to their enhanced mechanical properties when compared with monolithic metals. Research on the mechanical propert...Aluminum-based metal matrix composites (MMCs) are considered in several technological applications owing to their enhanced mechanical properties when compared with monolithic metals. Research on the mechanical properties MMCs was done by many researchers;however in depth study on the oxidation behavior of cenosphere, reinforced MMCs are required, since the application of Aluminum-based MMCs is extensively used in applications like automobile, navigation and aviation, where the demand on light weight corrosion resistance material is very much required. In the present work varied compositions of Al7075 grade Aluminum-cenosphere composites use liquid metallurgy route adopting stir casting approach. The experimental study was aimed at experimental investigations of developed composites under different corrosive environments. The corrosion tests were carried out as per ASTM standards. Salt spray test using NaCl was carried out as per ASTM B117 and immersion tests using NaCl and NaOH as corrodents were carried out by following ASTM G31 standards. The results obtained from the tests revealed that as increase in weight % of reinforcement, corrosion resistance increases up to 7.5% reinforcement, and further the corrosion resistance decreases marginally. Solution heat treated samples exhibited higher resistance to oxidation than cast samples in all corrosive environments. The SEM images show the presence of micro cracks and occurrence of pitting corrosion on the corrosion tested specimens.展开更多
The increased expectation of automotive, aviation and marine industries pertaining to the enhanced properties and their use in elevated temperature conditions and also corrosive environments leads to the development o...The increased expectation of automotive, aviation and marine industries pertaining to the enhanced properties and their use in elevated temperature conditions and also corrosive environments leads to the development of the newer material to meet the requirements. The requirements of the automobile and marine applications call for the increased mechanical properties and lower density accompanied with higher resistance to oxidation. Hence the present research work is aimed at the development of Hybrid metal matrix composites (HMMCs) using low-density base material and reinforcements. The aluminum of grade LM6 is preferred material in automobile industries, because it can be cast to any complex geometry and possess good machinability, further upon heat treatment, the properties of LM6 alloy can be enhanced to meet the industry requirements. However, requirements of automobile industries consist of increased mechanical properties, lower density and higher corrosion resistance. Hence, in the present research work, it is aimed to develop newer composite material using LM 6 grade Aluminum alloy as matrix material which is reinforced with varied percent Cenosphere and Red mud.展开更多
文摘Aluminum-based metal matrix composites (MMCs) are considered in several technological applications owing to their enhanced mechanical properties when compared with monolithic metals. Research on the mechanical properties MMCs was done by many researchers;however in depth study on the oxidation behavior of cenosphere, reinforced MMCs are required, since the application of Aluminum-based MMCs is extensively used in applications like automobile, navigation and aviation, where the demand on light weight corrosion resistance material is very much required. In the present work varied compositions of Al7075 grade Aluminum-cenosphere composites use liquid metallurgy route adopting stir casting approach. The experimental study was aimed at experimental investigations of developed composites under different corrosive environments. The corrosion tests were carried out as per ASTM standards. Salt spray test using NaCl was carried out as per ASTM B117 and immersion tests using NaCl and NaOH as corrodents were carried out by following ASTM G31 standards. The results obtained from the tests revealed that as increase in weight % of reinforcement, corrosion resistance increases up to 7.5% reinforcement, and further the corrosion resistance decreases marginally. Solution heat treated samples exhibited higher resistance to oxidation than cast samples in all corrosive environments. The SEM images show the presence of micro cracks and occurrence of pitting corrosion on the corrosion tested specimens.
文摘The increased expectation of automotive, aviation and marine industries pertaining to the enhanced properties and their use in elevated temperature conditions and also corrosive environments leads to the development of the newer material to meet the requirements. The requirements of the automobile and marine applications call for the increased mechanical properties and lower density accompanied with higher resistance to oxidation. Hence the present research work is aimed at the development of Hybrid metal matrix composites (HMMCs) using low-density base material and reinforcements. The aluminum of grade LM6 is preferred material in automobile industries, because it can be cast to any complex geometry and possess good machinability, further upon heat treatment, the properties of LM6 alloy can be enhanced to meet the industry requirements. However, requirements of automobile industries consist of increased mechanical properties, lower density and higher corrosion resistance. Hence, in the present research work, it is aimed to develop newer composite material using LM 6 grade Aluminum alloy as matrix material which is reinforced with varied percent Cenosphere and Red mud.