One of the dynamic phases of the traffic flow is the traffic jam. It appears in traffic flow when the vehicledensity is larger than the critical value. In this paper, a new method is presented to investigate the traff...One of the dynamic phases of the traffic flow is the traffic jam. It appears in traffic flow when the vehicledensity is larger than the critical value. In this paper, a new method is presented to investigate the traffic jam when thevehicle density is smaller than the critical value. In our method, we introduce noise into the traffic system after sufficienttransient time. Under the effect of noise, the traffic jam appears, and the phase transition from tree to synchronized flowoccurs in traffic flow. Our method is tested for the deterministic NaSch traffic model. The simulation results demonstratethat there exist a broad range of lower densities at which the noise effect leading to traffic jam can be observed.展开更多
We study the characteristics of phase transition to take the top-priority of randomization in the rules of NaSch model (i.e. noise-first model) into account via computing the relaxation time and the order parameter...We study the characteristics of phase transition to take the top-priority of randomization in the rules of NaSch model (i.e. noise-first model) into account via computing the relaxation time and the order parameter. The scaling exponents of the relaxation time and the scaling relation of order parameter, respectively, are obtained.展开更多
基金国家自然科学基金,the Research Award Program,教育部优秀青年教师资助计划
文摘One of the dynamic phases of the traffic flow is the traffic jam. It appears in traffic flow when the vehicledensity is larger than the critical value. In this paper, a new method is presented to investigate the traffic jam when thevehicle density is smaller than the critical value. In our method, we introduce noise into the traffic system after sufficienttransient time. Under the effect of noise, the traffic jam appears, and the phase transition from tree to synchronized flowoccurs in traffic flow. Our method is tested for the deterministic NaSch traffic model. The simulation results demonstratethat there exist a broad range of lower densities at which the noise effect leading to traffic jam can be observed.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10362001 and 10532060 and the Natural Science Foundation of Guangxi Zhuang Autonomous Region under Grant Nos. 0342012 and 0640003
文摘We study the characteristics of phase transition to take the top-priority of randomization in the rules of NaSch model (i.e. noise-first model) into account via computing the relaxation time and the order parameter. The scaling exponents of the relaxation time and the scaling relation of order parameter, respectively, are obtained.