针对AZ31镁合金作为镁电池负极时存在自腐蚀速率大、阳极极化、电位滞后等问题,寻找合适的缓蚀剂及其用量调配电解液以提高电池的放电性能。通过腐蚀浸泡试验表征了缓蚀剂Li_(2)CrO_(4)的缓蚀效果,然后通过极化曲线、电化学阻抗谱研究了...针对AZ31镁合金作为镁电池负极时存在自腐蚀速率大、阳极极化、电位滞后等问题,寻找合适的缓蚀剂及其用量调配电解液以提高电池的放电性能。通过腐蚀浸泡试验表征了缓蚀剂Li_(2)CrO_(4)的缓蚀效果,然后通过极化曲线、电化学阻抗谱研究了Mg(ClO_(4))_(2)溶液中Li_(2)CrO_(4)用量对AZ31镁合金电化学性能的影响,最后通过组装水系镁锰电池进行恒流放电作为应用端测试。结果表明:Li_(2)CrO_(4)能够使AZ31镁合金的腐蚀电位正移,最大正移量达到150 m V,在水系镁锰电池应用中能够提高镁电池的放电平台,当Li_(2)CrO_(4)质量分数为0.7%时放电平台提高0.15 V左右;当Li_(2)CrO_(4)质量分数为1.2%时,其能够显著改善AZ31镁合金在Mg(ClO_(4))_(2)溶液中的腐蚀,水系镁锰电池放电容量达最大,为196.9 m A·h,相对空白溶液,电池的放电容量提高约64%,工作电压高达1.39 V且放电曲线稳定。展开更多
Sodium-ion batteries(SIBs)have rapidly risen to the forefront of energy storage systems as a promising supplementary for Lithium-ion batteries(LIBs).Na_(3)V_(2)(PO_(4))_(2)F_(3)(NVPF)as a common cathode of SIBs,featur...Sodium-ion batteries(SIBs)have rapidly risen to the forefront of energy storage systems as a promising supplementary for Lithium-ion batteries(LIBs).Na_(3)V_(2)(PO_(4))_(2)F_(3)(NVPF)as a common cathode of SIBs,features the merits of high operating voltage,small volume change and favorable specific energy density.However,it suffers from poor cycling stability and rate performance induced by its low intrinsic conductivity.Herein,we propose an ingenious strategy targeting superior SIBs through cross-linked NVPF with multi-dimensional nanocarbon frameworks composed of amorphous carbon and carbon nanotubes(NVPF@C@CNTs).This rational design ensures favorable particle size for shortened sodium ion transmission pathway as well as improved electronic transfer network,thus leading to enhanced charge transfer kinetics and superior cycling stability.Benefited from this unique structure,significantly improved electrochemical properties are obtained,including high specific capacity(126.9 mAh g^(-1)at 1 C,1 C=128 mA g^(-1))and remarkably improved long-term cycling stability with 93.9%capacity retention after 1000 cycles at 20 C.The energy density of 286.8 Wh kg^(-1)can be reached for full cells with hard carbon as anode(NVPF@C@CNTs//HC).Additionally,the electrochemical performance of the full cell at high temperature is also investigated(95.3 mAh g^(-1)after 100 cycles at 1 C at 50℃).Such nanoscale dual-carbon networks engineering and thorough discussion of ion diffusion kinetics might make contributions to accelerating the process of phosphate cathodes in SIBs for large-scale energy storages.展开更多
In-situ XRD,^(31)P NMR and ^(23)Na NMR were used to analyze the interaction behavior of Na_(3)V_(2)(PO_(4))_(3) at low voltage,and then a new intercalation model was proposed.During the transition from Na_(3)V_(2)(PO_...In-situ XRD,^(31)P NMR and ^(23)Na NMR were used to analyze the interaction behavior of Na_(3)V_(2)(PO_(4))_(3) at low voltage,and then a new intercalation model was proposed.During the transition from Na_(3)V_(2)(PO_(4))_(3) to Na_(4)V_(2)(PO_(4))_(3),Na ions insert into M1,M2 and M3 sites simultaneously.Afterwards,during the transition of Na_(4)V_(2)(PO_(4))_(3)to Na_(5)V_(2)(PO_(4))_(3),Na ions mainly insert into M3 site.展开更多
文摘针对AZ31镁合金作为镁电池负极时存在自腐蚀速率大、阳极极化、电位滞后等问题,寻找合适的缓蚀剂及其用量调配电解液以提高电池的放电性能。通过腐蚀浸泡试验表征了缓蚀剂Li_(2)CrO_(4)的缓蚀效果,然后通过极化曲线、电化学阻抗谱研究了Mg(ClO_(4))_(2)溶液中Li_(2)CrO_(4)用量对AZ31镁合金电化学性能的影响,最后通过组装水系镁锰电池进行恒流放电作为应用端测试。结果表明:Li_(2)CrO_(4)能够使AZ31镁合金的腐蚀电位正移,最大正移量达到150 m V,在水系镁锰电池应用中能够提高镁电池的放电平台,当Li_(2)CrO_(4)质量分数为0.7%时放电平台提高0.15 V左右;当Li_(2)CrO_(4)质量分数为1.2%时,其能够显著改善AZ31镁合金在Mg(ClO_(4))_(2)溶液中的腐蚀,水系镁锰电池放电容量达最大,为196.9 m A·h,相对空白溶液,电池的放电容量提高约64%,工作电压高达1.39 V且放电曲线稳定。
基金financially supported by Science and Technology Foundation of Guizhou Province(QKHZC[2020]2Y037)the Science and Technology Innovation Program of Hunan Province(2020RC4005,2019RS1004)+2 种基金Research start-up funding from Central South University(202044019)Innovation Mover Program of Central South University(2020CX007)National Natural Science Foundation of China(U21A20284)
文摘Sodium-ion batteries(SIBs)have rapidly risen to the forefront of energy storage systems as a promising supplementary for Lithium-ion batteries(LIBs).Na_(3)V_(2)(PO_(4))_(2)F_(3)(NVPF)as a common cathode of SIBs,features the merits of high operating voltage,small volume change and favorable specific energy density.However,it suffers from poor cycling stability and rate performance induced by its low intrinsic conductivity.Herein,we propose an ingenious strategy targeting superior SIBs through cross-linked NVPF with multi-dimensional nanocarbon frameworks composed of amorphous carbon and carbon nanotubes(NVPF@C@CNTs).This rational design ensures favorable particle size for shortened sodium ion transmission pathway as well as improved electronic transfer network,thus leading to enhanced charge transfer kinetics and superior cycling stability.Benefited from this unique structure,significantly improved electrochemical properties are obtained,including high specific capacity(126.9 mAh g^(-1)at 1 C,1 C=128 mA g^(-1))and remarkably improved long-term cycling stability with 93.9%capacity retention after 1000 cycles at 20 C.The energy density of 286.8 Wh kg^(-1)can be reached for full cells with hard carbon as anode(NVPF@C@CNTs//HC).Additionally,the electrochemical performance of the full cell at high temperature is also investigated(95.3 mAh g^(-1)after 100 cycles at 1 C at 50℃).Such nanoscale dual-carbon networks engineering and thorough discussion of ion diffusion kinetics might make contributions to accelerating the process of phosphate cathodes in SIBs for large-scale energy storages.
基金supported by grants from the National Natural Science Foundation of China(No.22272055)multifunctional platform for innovation of ECNU(EPR).
文摘In-situ XRD,^(31)P NMR and ^(23)Na NMR were used to analyze the interaction behavior of Na_(3)V_(2)(PO_(4))_(3) at low voltage,and then a new intercalation model was proposed.During the transition from Na_(3)V_(2)(PO_(4))_(3) to Na_(4)V_(2)(PO_(4))_(3),Na ions insert into M1,M2 and M3 sites simultaneously.Afterwards,during the transition of Na_(4)V_(2)(PO_(4))_(3)to Na_(5)V_(2)(PO_(4))_(3),Na ions mainly insert into M3 site.