V_(3)O_(7)·H_(2)O(VO)is a high capacity cathode material in the field of aqueous zinc ion batteries(AZIBs),but it is limited by slow ion migration and low electrical conductivity.In this paper,polypyridine(PPyd)i...V_(3)O_(7)·H_(2)O(VO)is a high capacity cathode material in the field of aqueous zinc ion batteries(AZIBs),but it is limited by slow ion migration and low electrical conductivity.In this paper,polypyridine(PPyd)intercalated VO with nanoribbon structure was prepared by a simple in-situ pre-intercalation,which is noted VO-PPyd.The total density of states(TDOS)shows that after the pre-intercalation of PPyd,an intermediate energy level appears between the valence band and conduction band,which provides a step that can effectively reduce the band gap and enhance the electron conductivity.Furthermore,the density functional theory(DFT)results found that Zn^(2+)is more easily de-intercalated from the V-O skeleton,which proves that the embeddedness of PPyd improves the diffusion kinetics of Zn^(2+).Electrochemical studies have shown that VO-PPyd cathode materials exhibit excellent rate performance(high specific capacity of 465 and 192 mA h g^(-1)at 0.2 and 10 A g^(-1),respectively)and long-term cycling performance(92.7%capacity retention rate after 5300 cycles),due to their advantages in structure and composition.More importantly,the energy density of VO-PPyd//Zn at 581 and 5806 W kg^(-1)is 375 and 247 W h kg^(-1),respectively.VO-PPyd exhibits excellent electrochemical properties compared to previously reported vanadium based cathodes,which makes it highly competitive in the field of high-performance cathode materials of AZIBs.展开更多
The formation characteristics of calcium aluminates in the CaO-Al2O3-SiO2 system with sodium oxide was investigated by XRD, SEM-EDS and DSC-TG technologies. The main phases in the clinker after sintering at 1350 °...The formation characteristics of calcium aluminates in the CaO-Al2O3-SiO2 system with sodium oxide was investigated by XRD, SEM-EDS and DSC-TG technologies. The main phases in the clinker after sintering at 1350 °C are 12CaO?7Al2O3, 2CaO?Al2O3?SiO2 and 2CaO?SiO2 when the mass ratio of Al2O3 to SiO2 is 3.0 and the molar ratio of CaO to Al2O3 is 1.0. The proportion of 12CaO?7Al2O3 increases with the increase of Na2O addition when the molar ratio of Na2O to Al2O3 is from 0 to 0.4, while the proportion of 2CaO?Al2O3?SiO2 decreases with the increase of Na2O addition. Na2O forms solid solution in 12CaO?7Al2O3, which increases the volume of elementary cell of 12CaO?7Al2O3. The formation temperature of 12CaO?7Al2O3 is decreased by 30 °C when the molar ratio of Na2O to Al2O3 increases from 0 to 0.4 determined by DSC. The alumina leaching property of clinker increases obviously with the increase of Na2O addition.展开更多
Developing suitable anode materials for potassium-ion batteries(PIBs)remains a great challenge owing to the limited theoretical capacity of active materials and large radius of K+ion(1.38?).To solve these obstacles,by...Developing suitable anode materials for potassium-ion batteries(PIBs)remains a great challenge owing to the limited theoretical capacity of active materials and large radius of K+ion(1.38?).To solve these obstacles,by integrating the principles of multielectron transfer and rational porous crystal framework,we creatively propose the monoclinic Cu_(3)(OH)_(2)V_(2)O_(7)·2H_(2)O(CVO)as a novel anode for PIBs.Furthermore,inspired by the metastable nature of CVO under high temperature/pressure,we skillfully design a facile hydrothermal recrystallization strategy without the phase change and surfactants addition.Thus,for the first time,the porous composite of Cu_(3)(OH)_(2)V_(2)O_(7)·2H_(2)O nanobelts covered in situ by reduced graphene oxide(CVO NBs/r GO)was assembled,greatly improving the deficiencies of CVO.When used as a novel anode for PIBs,CVO NBs/r GO delivers large specific capacity(up to 551.4 m Ah g^(-1)at 50 m A g^(-1)),high-rate capability(215.3 m Ah g^(-1)at 2.5 A g^(-1))and super durability(203.6 m Ah g^(-1)at 500 m A g^(-1)even after 1000 cycles).The outstanding performance can be ascribed to the synergistic merits of desirable structural features of monoclinic CVO nanobelts and the highly conductive graphene 3D network,thus promoting the composite material stability and electrical/ionic conductivity.This work reveals a novel metal vanadate-based anode material for PIBs,would further motivate the subsequent batteries research on M_(3)(OH)_(2)V_(2)O_(7)-n H_(2)O(M;Co,Ni,Cu,Zn),and ultimately expands valuable fundamental understanding on designing other high-performance electrode materials,including the combined strategies of multielectron transfer with rational porous crystal framework,and the composite fabrication of 1D electrode nanostructure with conductive carbon matrix.展开更多
基金supported by the National Natural Science Foundation of China (21676036)the Natural Science Foundation of Chongqing (CSTB2023NSCQ-MSX0580)the Graduate Research and Innovation Foundation of Chongqing (CYB22043 and CYS22073)。
文摘V_(3)O_(7)·H_(2)O(VO)is a high capacity cathode material in the field of aqueous zinc ion batteries(AZIBs),but it is limited by slow ion migration and low electrical conductivity.In this paper,polypyridine(PPyd)intercalated VO with nanoribbon structure was prepared by a simple in-situ pre-intercalation,which is noted VO-PPyd.The total density of states(TDOS)shows that after the pre-intercalation of PPyd,an intermediate energy level appears between the valence band and conduction band,which provides a step that can effectively reduce the band gap and enhance the electron conductivity.Furthermore,the density functional theory(DFT)results found that Zn^(2+)is more easily de-intercalated from the V-O skeleton,which proves that the embeddedness of PPyd improves the diffusion kinetics of Zn^(2+).Electrochemical studies have shown that VO-PPyd cathode materials exhibit excellent rate performance(high specific capacity of 465 and 192 mA h g^(-1)at 0.2 and 10 A g^(-1),respectively)and long-term cycling performance(92.7%capacity retention rate after 5300 cycles),due to their advantages in structure and composition.More importantly,the energy density of VO-PPyd//Zn at 581 and 5806 W kg^(-1)is 375 and 247 W h kg^(-1),respectively.VO-PPyd exhibits excellent electrochemical properties compared to previously reported vanadium based cathodes,which makes it highly competitive in the field of high-performance cathode materials of AZIBs.
基金Projects(51174054,51104041)supported by the National Natural Science Foundation of China
文摘The formation characteristics of calcium aluminates in the CaO-Al2O3-SiO2 system with sodium oxide was investigated by XRD, SEM-EDS and DSC-TG technologies. The main phases in the clinker after sintering at 1350 °C are 12CaO?7Al2O3, 2CaO?Al2O3?SiO2 and 2CaO?SiO2 when the mass ratio of Al2O3 to SiO2 is 3.0 and the molar ratio of CaO to Al2O3 is 1.0. The proportion of 12CaO?7Al2O3 increases with the increase of Na2O addition when the molar ratio of Na2O to Al2O3 is from 0 to 0.4, while the proportion of 2CaO?Al2O3?SiO2 decreases with the increase of Na2O addition. Na2O forms solid solution in 12CaO?7Al2O3, which increases the volume of elementary cell of 12CaO?7Al2O3. The formation temperature of 12CaO?7Al2O3 is decreased by 30 °C when the molar ratio of Na2O to Al2O3 increases from 0 to 0.4 determined by DSC. The alumina leaching property of clinker increases obviously with the increase of Na2O addition.
基金supported by the National Natural Science Foundation of China(52072118,51772089)the Youth 1000 Talent Program of China+3 种基金the Research and Development Plan of Key Areas in Hunan Province(2019GK2235)the Key Research and Development Program of Ningxia(2020BDE03007)the China Postdoctoral Science Foundation(2019M653649)the Guangdong Basic and Applied Basic Research Fund(2019A1515110518,2019A1515111188,2020B0909030004)。
文摘Developing suitable anode materials for potassium-ion batteries(PIBs)remains a great challenge owing to the limited theoretical capacity of active materials and large radius of K+ion(1.38?).To solve these obstacles,by integrating the principles of multielectron transfer and rational porous crystal framework,we creatively propose the monoclinic Cu_(3)(OH)_(2)V_(2)O_(7)·2H_(2)O(CVO)as a novel anode for PIBs.Furthermore,inspired by the metastable nature of CVO under high temperature/pressure,we skillfully design a facile hydrothermal recrystallization strategy without the phase change and surfactants addition.Thus,for the first time,the porous composite of Cu_(3)(OH)_(2)V_(2)O_(7)·2H_(2)O nanobelts covered in situ by reduced graphene oxide(CVO NBs/r GO)was assembled,greatly improving the deficiencies of CVO.When used as a novel anode for PIBs,CVO NBs/r GO delivers large specific capacity(up to 551.4 m Ah g^(-1)at 50 m A g^(-1)),high-rate capability(215.3 m Ah g^(-1)at 2.5 A g^(-1))and super durability(203.6 m Ah g^(-1)at 500 m A g^(-1)even after 1000 cycles).The outstanding performance can be ascribed to the synergistic merits of desirable structural features of monoclinic CVO nanobelts and the highly conductive graphene 3D network,thus promoting the composite material stability and electrical/ionic conductivity.This work reveals a novel metal vanadate-based anode material for PIBs,would further motivate the subsequent batteries research on M_(3)(OH)_(2)V_(2)O_(7)-n H_(2)O(M;Co,Ni,Cu,Zn),and ultimately expands valuable fundamental understanding on designing other high-performance electrode materials,including the combined strategies of multielectron transfer with rational porous crystal framework,and the composite fabrication of 1D electrode nanostructure with conductive carbon matrix.