Multiple regression equations of liquidus temperature, electrical conductivity and bath density of the Na_3AlF_6-AlF_3-BaC1_2-NaCl system were obtained from experiments by using orthogonal regression method. The exper...Multiple regression equations of liquidus temperature, electrical conductivity and bath density of the Na_3AlF_6-AlF_3-BaC1_2-NaCl system were obtained from experiments by using orthogonal regression method. The experiments were carried out in 100A cell with low melting point electrolyte, the influences of cathodic current density, electrolytic temperature, density differences of bath and liquid aluminum on current efficiency (CE) were studied; when the electrolyte cryolite ratio was 2.5, w(BaC1_2) and w(NaCl) were 48% and 10%, respectively, CE reached 90% and specific energy consumption was 10.97k Wb/kg/kg. Because of the fact that aluminum metal obtained floated on the surface of molten electrolyte, this electrolysis method was then defined as low temperature aluminum floating electrolysis. The results showed that the new low temperature aluminum electrolysis process in the Na_3AlF_6-AlF_3-BaC1_2-NaCl bath system was practical and promising.展开更多
As one of prussian blue analogues,Co_(3)[Co(CN)_(6)]_(2) has been explored as a promising anode material for potassium-ion batteries(PIBs) owing to its high potassium storage capacity.Unfortunately,Co_(3)[Co(CN)_(6)]_...As one of prussian blue analogues,Co_(3)[Co(CN)_(6)]_(2) has been explored as a promising anode material for potassium-ion batteries(PIBs) owing to its high potassium storage capacity.Unfortunately,Co_(3)[Co(CN)_(6)]_(2) possesses low electronic conductivity and its structure collapses easily during potassiation and depotassiation,resulting in poor rate performance and cyclic stability.To solve these problems,we develop a facile multi-step method to successfully combine uniformCo_(3)[Co(CN)_(6)]_(2) nanocubes with rGO by C-O-Co bonds.As expected,these chemcial bonds shorten the distance betweenCo_(3)[Co(CN)_(6)]_(2) and rGO to the angstrom meter level,which significantly improve the electronic conductivity ofCo_(3)[Co(CN)_(6)]_(2).Besides,the complete encapsulation ofCo_(3)[Co(CN)_(6)]_(2) nanocubes by rGO endows the structure ofCo_(3)[Co(CN)_(6)]_(2) with high stability,thus withstanding repeated insertion/extraction of potassium-ions without visible morphological and structural changes.Benefiting from the abovementioned structural advantages,the CO3 [Co(CN)6]2/rGO nanocomposite exhibits a high reversible capacity of 400.8 mAh g^(-1) at a current density of 0.1 A g^(-1),an exceptional rate capability of 115.5 mAh g^(-1) at 5 A g^(-1), and an ultralong cycle life of 231.9 mAh g^(-1) at 0.1 A g^(-1) after 1000 cycles.Additionally,the effects of different amounts of rGO and different sizes ofCo_(3)[Co(CN)_(6)]_(2) nanocubes on the potassium storage performance are also studied.This work offers an ideal route to significantly enhance the electrochemical properties of prussian blue analogues.展开更多
Full-spectrum phosphor-converted white-light-emitting diodes(pc-WLED)are emerging as a mainstream technology in semiconductor lighting.Nevertheless,high-performance blue phosphor which can be excited efficiently by a ...Full-spectrum phosphor-converted white-light-emitting diodes(pc-WLED)are emerging as a mainstream technology in semiconductor lighting.Nevertheless,high-performance blue phosphor which can be excited efficiently by a 400 nm NUV diode chip is still lacking.Herein,we present a blue-emitting Na_(3)KMg_(7)(PO_(4))6:Eu^(2+)phosphor synthesized by the solid-reaction method.Particularly,we find that the using of Li_(2)CO_(3)as flux can significantly improve the crystal quality and thus the emission efficiency of the phosphor.Meanwhile,the excitation peak of the phosphor shifts from 365 to 400 nm,which is pivotal for efficient NUV(400 nm)diode chip excitation.The practical Eu^(2+)concentration is also enhanced by using Li_(2)CO_(3)as flux,and the absorption efficiency is greatly increased.This phosphor exhibits superior PL thermal stability,namely retains 94%integrated photoluminescence intensity at 150℃of that at 25℃.As a result,the optimized phosphor shows an emission band peaked at 437 nm with a bandwidth of 40 nm and a high external photoluminescence quantum yield of 51.7%.Finally,a pc-WLED was fabricated by using NKMPO:Eu^(2+)blue,Sr_(2)SiO_(4):Eu^(2+)green,CaAlSiN_(3):Eu^(2+)red phosphors,and a 400 nm NUV diode chip.It shows a high color rendering index of R_(a)=96.4 and a correlated color temperature of 4358 K.These results prove that NKMPO:Eu^(2+)is a promising blue phosphor for full-spectrum WLED based on NUV diode chips.展开更多
Prussian blue analogues(PBAs)have gained significant popularity as cathode materials for sodium-ion batteries(SIBs)due to their remarkable features such as high capacity and convenient synthesis.However,PBAs usually s...Prussian blue analogues(PBAs)have gained significant popularity as cathode materials for sodium-ion batteries(SIBs)due to their remarkable features such as high capacity and convenient synthesis.However,PBAs usually suffer from kinetic problems during the electrochemical reactions due to sluggish Na~+diffusion in the large crystals,resulting in low-capacity utilization and inferior rate capability.In this study,we present a facile etching method aiming at activating the sodium storage sites and accelerating the Na~+transport of Na_2NiFe(CN)_6(denoted as NaNiHCF)by precisely controlling its morphologies.A progressive corner passivation phenomenon occurred in NaNiHCF during the etching process,which led to a substantial augmentation of the specific surface area as the morphology transitioned from a standard cube to a dice shape.Notably,by controlling the etching time,the obtained NaNiHCF-3 electrode exhibited boosted electrochemical performance with high reversible capacity of 83.5mAh g~(-1)(98.2%of its theoretical capacity),superior rate capability(71.2 mAh g~(-1)at 10 C),and stable cycling life-span at different temperatures.Both experimental and computational methods reveal the remarkably reversible structural evolution process and improved Na~+diffusion coefficient.We believe that this work can serve as an indispensable reference to tailor the structure of PBAs to obtain improved electrochemical performance.展开更多
The development of effective and low-energy-consumption catalysts for CO_(2)conversion into high-value-added products by constructing versatile active sites on the surface of heterogeneous compounds is an ur-gent and ...The development of effective and low-energy-consumption catalysts for CO_(2)conversion into high-value-added products by constructing versatile active sites on the surface of heterogeneous compounds is an ur-gent and challenging task.In this study,a stable and well-defined heterogeneous cobalt hexacyanocobal-tate(Co_(3)[Co(CN)_(6)]_(2)),typical cobalt Prussian blue analogue(CoCo-PBA)modified with tetrabutylammo-nium bromide(TBAB),is proven to be the superior catalyst for CO_(2)and epoxide coupling to produce cyclic carbonates with>99%yield under mild reaction conditions(1.0 MPa,65℃).Based on a series of characterizations,it is revealed that the CoCo-PBA structure can maintain relatively high thermal and chemical stability.Recycling experiments exhibited that the CoCo-PBA system could retain 98%of the original activity after six reaction rounds.The CoCo-PBA/TBAB catalytic system was also highly active for coupling CO_(2)with other industrial-grade epoxides.These results show the Co Co-PBA catalytic system potential flexibility and the generality of the catalyst preparation strategy.展开更多
基金The project was financially supported by the National Natural Science Foundation of China! (Gmnt No.59574018)China Postdocto
文摘Multiple regression equations of liquidus temperature, electrical conductivity and bath density of the Na_3AlF_6-AlF_3-BaC1_2-NaCl system were obtained from experiments by using orthogonal regression method. The experiments were carried out in 100A cell with low melting point electrolyte, the influences of cathodic current density, electrolytic temperature, density differences of bath and liquid aluminum on current efficiency (CE) were studied; when the electrolyte cryolite ratio was 2.5, w(BaC1_2) and w(NaCl) were 48% and 10%, respectively, CE reached 90% and specific energy consumption was 10.97k Wb/kg/kg. Because of the fact that aluminum metal obtained floated on the surface of molten electrolyte, this electrolysis method was then defined as low temperature aluminum floating electrolysis. The results showed that the new low temperature aluminum electrolysis process in the Na_3AlF_6-AlF_3-BaC1_2-NaCl bath system was practical and promising.
基金supported by the National Natural Science Foundation of China(51577094)the Natural Science Foundation of Jiangsu Province of China(BK20180086)。
文摘As one of prussian blue analogues,Co_(3)[Co(CN)_(6)]_(2) has been explored as a promising anode material for potassium-ion batteries(PIBs) owing to its high potassium storage capacity.Unfortunately,Co_(3)[Co(CN)_(6)]_(2) possesses low electronic conductivity and its structure collapses easily during potassiation and depotassiation,resulting in poor rate performance and cyclic stability.To solve these problems,we develop a facile multi-step method to successfully combine uniformCo_(3)[Co(CN)_(6)]_(2) nanocubes with rGO by C-O-Co bonds.As expected,these chemcial bonds shorten the distance betweenCo_(3)[Co(CN)_(6)]_(2) and rGO to the angstrom meter level,which significantly improve the electronic conductivity ofCo_(3)[Co(CN)_(6)]_(2).Besides,the complete encapsulation ofCo_(3)[Co(CN)_(6)]_(2) nanocubes by rGO endows the structure ofCo_(3)[Co(CN)_(6)]_(2) with high stability,thus withstanding repeated insertion/extraction of potassium-ions without visible morphological and structural changes.Benefiting from the abovementioned structural advantages,the CO3 [Co(CN)6]2/rGO nanocomposite exhibits a high reversible capacity of 400.8 mAh g^(-1) at a current density of 0.1 A g^(-1),an exceptional rate capability of 115.5 mAh g^(-1) at 5 A g^(-1), and an ultralong cycle life of 231.9 mAh g^(-1) at 0.1 A g^(-1) after 1000 cycles.Additionally,the effects of different amounts of rGO and different sizes ofCo_(3)[Co(CN)_(6)]_(2) nanocubes on the potassium storage performance are also studied.This work offers an ideal route to significantly enhance the electrochemical properties of prussian blue analogues.
基金Project supported by the National Natural Science Foundation of China(11974351)。
文摘Full-spectrum phosphor-converted white-light-emitting diodes(pc-WLED)are emerging as a mainstream technology in semiconductor lighting.Nevertheless,high-performance blue phosphor which can be excited efficiently by a 400 nm NUV diode chip is still lacking.Herein,we present a blue-emitting Na_(3)KMg_(7)(PO_(4))6:Eu^(2+)phosphor synthesized by the solid-reaction method.Particularly,we find that the using of Li_(2)CO_(3)as flux can significantly improve the crystal quality and thus the emission efficiency of the phosphor.Meanwhile,the excitation peak of the phosphor shifts from 365 to 400 nm,which is pivotal for efficient NUV(400 nm)diode chip excitation.The practical Eu^(2+)concentration is also enhanced by using Li_(2)CO_(3)as flux,and the absorption efficiency is greatly increased.This phosphor exhibits superior PL thermal stability,namely retains 94%integrated photoluminescence intensity at 150℃of that at 25℃.As a result,the optimized phosphor shows an emission band peaked at 437 nm with a bandwidth of 40 nm and a high external photoluminescence quantum yield of 51.7%.Finally,a pc-WLED was fabricated by using NKMPO:Eu^(2+)blue,Sr_(2)SiO_(4):Eu^(2+)green,CaAlSiN_(3):Eu^(2+)red phosphors,and a 400 nm NUV diode chip.It shows a high color rendering index of R_(a)=96.4 and a correlated color temperature of 4358 K.These results prove that NKMPO:Eu^(2+)is a promising blue phosphor for full-spectrum WLED based on NUV diode chips.
基金financially supported from the National Natural Science Foundation of China(U20A20249,21972108,and 22209125)。
文摘Prussian blue analogues(PBAs)have gained significant popularity as cathode materials for sodium-ion batteries(SIBs)due to their remarkable features such as high capacity and convenient synthesis.However,PBAs usually suffer from kinetic problems during the electrochemical reactions due to sluggish Na~+diffusion in the large crystals,resulting in low-capacity utilization and inferior rate capability.In this study,we present a facile etching method aiming at activating the sodium storage sites and accelerating the Na~+transport of Na_2NiFe(CN)_6(denoted as NaNiHCF)by precisely controlling its morphologies.A progressive corner passivation phenomenon occurred in NaNiHCF during the etching process,which led to a substantial augmentation of the specific surface area as the morphology transitioned from a standard cube to a dice shape.Notably,by controlling the etching time,the obtained NaNiHCF-3 electrode exhibited boosted electrochemical performance with high reversible capacity of 83.5mAh g~(-1)(98.2%of its theoretical capacity),superior rate capability(71.2 mAh g~(-1)at 10 C),and stable cycling life-span at different temperatures.Both experimental and computational methods reveal the remarkably reversible structural evolution process and improved Na~+diffusion coefficient.We believe that this work can serve as an indispensable reference to tailor the structure of PBAs to obtain improved electrochemical performance.
基金financial support of the National Natural Science Foundation of China (Nos.21774108 and 51973190)。
文摘The development of effective and low-energy-consumption catalysts for CO_(2)conversion into high-value-added products by constructing versatile active sites on the surface of heterogeneous compounds is an ur-gent and challenging task.In this study,a stable and well-defined heterogeneous cobalt hexacyanocobal-tate(Co_(3)[Co(CN)_(6)]_(2)),typical cobalt Prussian blue analogue(CoCo-PBA)modified with tetrabutylammo-nium bromide(TBAB),is proven to be the superior catalyst for CO_(2)and epoxide coupling to produce cyclic carbonates with>99%yield under mild reaction conditions(1.0 MPa,65℃).Based on a series of characterizations,it is revealed that the CoCo-PBA structure can maintain relatively high thermal and chemical stability.Recycling experiments exhibited that the CoCo-PBA system could retain 98%of the original activity after six reaction rounds.The CoCo-PBA/TBAB catalytic system was also highly active for coupling CO_(2)with other industrial-grade epoxides.These results show the Co Co-PBA catalytic system potential flexibility and the generality of the catalyst preparation strategy.