A method is proposed to resolve the typical problem of air combat situation assessment. Taking the one-to-one air combat as an example and on the basis of air combat data recorded by the air combat maneuvering instrum...A method is proposed to resolve the typical problem of air combat situation assessment. Taking the one-to-one air combat as an example and on the basis of air combat data recorded by the air combat maneuvering instrument, the problem of air combat situation assessment is equivalent to the situation classification problem of air combat data. The fuzzy C-means clustering algorithm is proposed to cluster the selected air combat sample data and the situation classification of the data is determined by the data correlation analysis in combination with the clustering results and the pilots' description of the air combat process. On the basis of semi-supervised naive Bayes classifier, an improved algorithm is proposed based on data classification confidence, through which the situation classification of air combat data is carried out. The simulation results show that the improved algorithm can assess the air combat situation effectively and the improvement of the algorithm can promote the classification performance without significantly affecting the efficiency of the classifier.展开更多
The sharp increase of the amount of Internet Chinese text data has significantly prolonged the processing time of classification on these data.In order to solve this problem,this paper proposes and implements a parall...The sharp increase of the amount of Internet Chinese text data has significantly prolonged the processing time of classification on these data.In order to solve this problem,this paper proposes and implements a parallel naive Bayes algorithm(PNBA)for Chinese text classification based on Spark,a parallel memory computing platform for big data.This algorithm has implemented parallel operation throughout the entire training and prediction process of naive Bayes classifier mainly by adopting the programming model of resilient distributed datasets(RDD).For comparison,a PNBA based on Hadoop is also implemented.The test results show that in the same computing environment and for the same text sets,the Spark PNBA is obviously superior to the Hadoop PNBA in terms of key indicators such as speedup ratio and scalability.Therefore,Spark-based parallel algorithms can better meet the requirement of large-scale Chinese text data mining.展开更多
With the increasing intelligence and integration,a great number of two-valued variables(generally stored in the form of 0 or 1)often exist in large-scale industrial processes.However,these variables cannot be effectiv...With the increasing intelligence and integration,a great number of two-valued variables(generally stored in the form of 0 or 1)often exist in large-scale industrial processes.However,these variables cannot be effectively handled by traditional monitoring methods such as linear discriminant analysis(LDA),principal component analysis(PCA)and partial least square(PLS)analysis.Recently,a mixed hidden naive Bayesian model(MHNBM)is developed for the first time to utilize both two-valued and continuous variables for abnormality monitoring.Although the MHNBM is effective,it still has some shortcomings that need to be improved.For the MHNBM,the variables with greater correlation to other variables have greater weights,which can not guarantee greater weights are assigned to the more discriminating variables.In addition,the conditional P(x j|x j′,y=k)probability must be computed based on historical data.When the training data is scarce,the conditional probability between continuous variables tends to be uniformly distributed,which affects the performance of MHNBM.Here a novel feature weighted mixed naive Bayes model(FWMNBM)is developed to overcome the above shortcomings.For the FWMNBM,the variables that are more correlated to the class have greater weights,which makes the more discriminating variables contribute more to the model.At the same time,FWMNBM does not have to calculate the conditional probability between variables,thus it is less restricted by the number of training data samples.Compared with the MHNBM,the FWMNBM has better performance,and its effectiveness is validated through numerical cases of a simulation example and a practical case of the Zhoushan thermal power plant(ZTPP),China.展开更多
The naive, Bayes (NB) model has been successfully used to tackle spare, and is very accurate. However, there is still room for improwment. We use a train on or near error (TONE) method in online NB to enhance the ...The naive, Bayes (NB) model has been successfully used to tackle spare, and is very accurate. However, there is still room for improwment. We use a train on or near error (TONE) method in online NB to enhance the perfornmnee of NB and reduce the number of training emails. We conducted an experiment to determine the performanee of the improved algorithm by plotting (I-ROCA)% curves. The resuhs show that the proposed method improves the performanee of original NB.展开更多
In recent years,with the increasing popularity of social networks,rumors have become more common.At present,the solution to rumors in social networks is mainly through media censorship and manual reporting,but this me...In recent years,with the increasing popularity of social networks,rumors have become more common.At present,the solution to rumors in social networks is mainly through media censorship and manual reporting,but this method requires a lot of manpower and material resources,and the cost is relatively high.Therefore,research on the characteristics of rumors and automatic identification and classification of network message text is of great significance.This paper uses the Naive Bayes algorithm combined with Laplacian smoothing to identify rumors in social network texts.The first is to segment the text and remove the stop words after the word segmentation is completed.Because of the data-sensitive nature of Naive Bayes,this paper performs text preprocessing on the input data.Then a naive Bayes classifier is constructed,and the Laplacian smoothing method is introduced to solve the problem of using the naive Bayes model to estimate the zero probability in rumor recognition.Finally,experiments show that the Naive Bayes algorithm combined with Laplace smoothing can effectively improve the accuracy of rumor recognition.展开更多
Spam is a universal problem with which everyone is familiar. A number of approaches are used for Spam filtering. The most common filtering technique is content-based filtering which uses the actual text of message to ...Spam is a universal problem with which everyone is familiar. A number of approaches are used for Spam filtering. The most common filtering technique is content-based filtering which uses the actual text of message to determine whether it is Spam or not. The content is very dynamic and it is very challenging to represent all information in a mathematical model of classification. For instance, in content-based Spam filtering, the characteristics used by the filter to identify Spam message are constantly changing over time. Na?ve Bayes method represents the changing nature of message using probability theory and support vector machine (SVM) represents those using different features. These two methods of classification are efficient in different domains and the case of Nepali SMS or Text classification has not yet been in consideration;these two methods do not consider the issue and it is interesting to find out the performance of both the methods in the problem of Nepali Text classification. In this paper, the Na?ve Bayes and SVM-based classification techniques are implemented to classify the Nepali SMS as Spam and non-Spam. An empirical analysis for various text cases has been done to evaluate accuracy measure of the classification methodologies used in this study. And, it is found to be 87.15% accurate in SVM and 92.74% accurate in the case of Na?ve Bayes.展开更多
基金supported by the Aviation Science Foundation of China(20152096019)
文摘A method is proposed to resolve the typical problem of air combat situation assessment. Taking the one-to-one air combat as an example and on the basis of air combat data recorded by the air combat maneuvering instrument, the problem of air combat situation assessment is equivalent to the situation classification problem of air combat data. The fuzzy C-means clustering algorithm is proposed to cluster the selected air combat sample data and the situation classification of the data is determined by the data correlation analysis in combination with the clustering results and the pilots' description of the air combat process. On the basis of semi-supervised naive Bayes classifier, an improved algorithm is proposed based on data classification confidence, through which the situation classification of air combat data is carried out. The simulation results show that the improved algorithm can assess the air combat situation effectively and the improvement of the algorithm can promote the classification performance without significantly affecting the efficiency of the classifier.
基金Project(KC18071)supported by the Application Foundation Research Program of Xuzhou,ChinaProjects(2017YFC0804401,2017YFC0804409)supported by the National Key R&D Program of China
文摘The sharp increase of the amount of Internet Chinese text data has significantly prolonged the processing time of classification on these data.In order to solve this problem,this paper proposes and implements a parallel naive Bayes algorithm(PNBA)for Chinese text classification based on Spark,a parallel memory computing platform for big data.This algorithm has implemented parallel operation throughout the entire training and prediction process of naive Bayes classifier mainly by adopting the programming model of resilient distributed datasets(RDD).For comparison,a PNBA based on Hadoop is also implemented.The test results show that in the same computing environment and for the same text sets,the Spark PNBA is obviously superior to the Hadoop PNBA in terms of key indicators such as speedup ratio and scalability.Therefore,Spark-based parallel algorithms can better meet the requirement of large-scale Chinese text data mining.
基金supported by the National Natural Science Foundation of China(62033008,61873143)。
文摘With the increasing intelligence and integration,a great number of two-valued variables(generally stored in the form of 0 or 1)often exist in large-scale industrial processes.However,these variables cannot be effectively handled by traditional monitoring methods such as linear discriminant analysis(LDA),principal component analysis(PCA)and partial least square(PLS)analysis.Recently,a mixed hidden naive Bayesian model(MHNBM)is developed for the first time to utilize both two-valued and continuous variables for abnormality monitoring.Although the MHNBM is effective,it still has some shortcomings that need to be improved.For the MHNBM,the variables with greater correlation to other variables have greater weights,which can not guarantee greater weights are assigned to the more discriminating variables.In addition,the conditional P(x j|x j′,y=k)probability must be computed based on historical data.When the training data is scarce,the conditional probability between continuous variables tends to be uniformly distributed,which affects the performance of MHNBM.Here a novel feature weighted mixed naive Bayes model(FWMNBM)is developed to overcome the above shortcomings.For the FWMNBM,the variables that are more correlated to the class have greater weights,which makes the more discriminating variables contribute more to the model.At the same time,FWMNBM does not have to calculate the conditional probability between variables,thus it is less restricted by the number of training data samples.Compared with the MHNBM,the FWMNBM has better performance,and its effectiveness is validated through numerical cases of a simulation example and a practical case of the Zhoushan thermal power plant(ZTPP),China.
基金supported by National Natural Science Foundation of China under Grant NO. 60903083Research fund for the doctoral program of higher education of China under Grant NO.20092303120005the Research Fund of ZTE Corporation
文摘The naive, Bayes (NB) model has been successfully used to tackle spare, and is very accurate. However, there is still room for improwment. We use a train on or near error (TONE) method in online NB to enhance the perfornmnee of NB and reduce the number of training emails. We conducted an experiment to determine the performanee of the improved algorithm by plotting (I-ROCA)% curves. The resuhs show that the proposed method improves the performanee of original NB.
文摘In recent years,with the increasing popularity of social networks,rumors have become more common.At present,the solution to rumors in social networks is mainly through media censorship and manual reporting,but this method requires a lot of manpower and material resources,and the cost is relatively high.Therefore,research on the characteristics of rumors and automatic identification and classification of network message text is of great significance.This paper uses the Naive Bayes algorithm combined with Laplacian smoothing to identify rumors in social network texts.The first is to segment the text and remove the stop words after the word segmentation is completed.Because of the data-sensitive nature of Naive Bayes,this paper performs text preprocessing on the input data.Then a naive Bayes classifier is constructed,and the Laplacian smoothing method is introduced to solve the problem of using the naive Bayes model to estimate the zero probability in rumor recognition.Finally,experiments show that the Naive Bayes algorithm combined with Laplace smoothing can effectively improve the accuracy of rumor recognition.
文摘Spam is a universal problem with which everyone is familiar. A number of approaches are used for Spam filtering. The most common filtering technique is content-based filtering which uses the actual text of message to determine whether it is Spam or not. The content is very dynamic and it is very challenging to represent all information in a mathematical model of classification. For instance, in content-based Spam filtering, the characteristics used by the filter to identify Spam message are constantly changing over time. Na?ve Bayes method represents the changing nature of message using probability theory and support vector machine (SVM) represents those using different features. These two methods of classification are efficient in different domains and the case of Nepali SMS or Text classification has not yet been in consideration;these two methods do not consider the issue and it is interesting to find out the performance of both the methods in the problem of Nepali Text classification. In this paper, the Na?ve Bayes and SVM-based classification techniques are implemented to classify the Nepali SMS as Spam and non-Spam. An empirical analysis for various text cases has been done to evaluate accuracy measure of the classification methodologies used in this study. And, it is found to be 87.15% accurate in SVM and 92.74% accurate in the case of Na?ve Bayes.