Link scheduling has always been a fundamental problem in wireless networks for its direct impacts on the performance of wireless networks such as throughput capacity,transmission delay,lifetime,etc.Existing work is ma...Link scheduling has always been a fundamental problem in wireless networks for its direct impacts on the performance of wireless networks such as throughput capacity,transmission delay,lifetime,etc.Existing work is mainly established under graphbased models,which are not only impractical but also incorrect due to the essentially fading characteristics of signals.In this paper,we study the shortest link scheduling problem under two more realistic models,namely the signal to interference plus noise ratio(SINR)model and the Rayleigh fading model.We propose a centralized square-based scheduling algorithm(CSSA)with oblivious power control under the SINR model and prove its correctness under both the SINR model and the Rayleigh fading model.Furthermore,we extend CSSA and propose a distributed square-based scheduling algorithm(DSSA).Note that DSSA adopts CSMA/CA so that a wireless node can compete for the wireless channel before starting its communication.We also show theoretical analysis and conduct extensive simulations to exhibit the correctness and efficiency of our algorithms.展开更多
In this paper,we study the system performance of mobile edge computing(MEC)wireless sensor networks(WSNs)using a multiantenna access point(AP)and two sensor clusters based on uplink nonorthogonal multiple access(NOMA)...In this paper,we study the system performance of mobile edge computing(MEC)wireless sensor networks(WSNs)using a multiantenna access point(AP)and two sensor clusters based on uplink nonorthogonal multiple access(NOMA).Due to limited computation and energy resources,the cluster heads(CHs)offload their tasks to a multiantenna AP over Nakagami-m fading.We proposed a combination protocol for NOMA-MEC-WSNs in which the AP selects either selection combining(SC)or maximal ratio combining(MRC)and each cluster selects a CH to participate in the communication process by employing the sensor node(SN)selection.We derive the closed-form exact expressions of the successful computation probability(SCP)to evaluate the system performance with the latency and energy consumption constraints of the considered WSN.Numerical results are provided to gain insight into the system performance in terms of the SCP based on system parameters such as the number of AP antennas,number of SNs in each cluster,task length,working frequency,offloading ratio,and transmit power allocation.Furthermore,to determine the optimal resource parameters,i.e.,the offloading ratio,power allocation of the two CHs,and MEC AP resources,we proposed two algorithms to achieve the best system performance.Our approach reveals that the optimal parameters with different schemes significantly improve SCP compared to other similar studies.We use Monte Carlo simulations to confirm the validity of our analysis.展开更多
This paper presents a 220-GHz-band 7-m wireless link with a 45-Gbps transmission data rate by using 16 quadrature amplitude modulation(16-QAM).Super-heterodyne transceiver modules are developed for transmission and re...This paper presents a 220-GHz-band 7-m wireless link with a 45-Gbps transmission data rate by using 16 quadrature amplitude modulation(16-QAM).Super-heterodyne transceiver modules are developed for transmission and reception of the modulated signals,which consist of a Schottky barrier diodes(SBD)based sub-harmonic mixer(SHM),an InP HEMT low noise amplifier(LNA),a waveguide band-pass filter(BPF),and a 108-GHz local oscillator(LO)multiplier chain.The transmitter features a peak transmit power of 1.41 dBm,and the IF frequency varies from 5 GHz to 20 GHz.Besides,the receiver features a conversion gain of 9.3 dB in average and a noise temperature of 3052.8 K.The measured results indicate that the transceiver modules enable data transmission of a 45-Gbps 16-QAM signal with Signal-Noise-Ratio(SNR)from 11.59 dB to 15.36 dB in a 7-m line-of-sight channel.展开更多
Wireless sensor networks (WSNs) have many potential applications [1,2] and unique challenges. They usually consist of hundreds or thousands of small sensor nodes such as MICA2, which operate autonomously;conditions su...Wireless sensor networks (WSNs) have many potential applications [1,2] and unique challenges. They usually consist of hundreds or thousands of small sensor nodes such as MICA2, which operate autonomously;conditions such as cost, invisible deployment and many application domains, lead to small size and resource limited sensors [3]. WSNs are susceptible to many types of link layer attacks [1] and most of traditional network security techniques are unusable on WSNs [3];This is due to wireless and shared nature of communication channel, untrusted transmissions, deployment in open environments, unattended nature and limited resources [1]. Therefore security is a vital requirement for these networks;but we have to design a proper security mechanism that attends to WSN’s constraints and requirements. In this paper, we focus on security of WSNs, divide it (the WSNs security) into four categories and will consider them, include: an overview of WSNs, security in WSNs, the threat model on WSNs, a wide variety of WSNs’ link layer attacks and a comparison of them. This work enables us to identify the purpose and capabilities of the attackers;furthermore, the goal and effects of the link layer attacks on WSNs are introduced. Also, this paper discusses known approaches of security detection and defensive mechanisms against the link layer attacks;this would enable IT security managers to manage the link layer attacks of WSNs more effectively.展开更多
A novel link adaptation scheme using linear Auto Regressive (AR) model channel estimation algorithm to enhance the performance of auto rate selection mechanism in IEEE 802.11g is proposed. This scheme can overcome t...A novel link adaptation scheme using linear Auto Regressive (AR) model channel estimation algorithm to enhance the performance of auto rate selection mechanism in IEEE 802.11g is proposed. This scheme can overcome the low efficiency caused by time interval between the time when Received Signal Strength (RSS) is measured and the time when rate is selected. The best rate is selected based on data payload length, frame retry count and the estimated RSS, which is estimated from recorded RSSs. Simulation results show that the proposed scheme enhances mean throughput performance up to 7%, in saturation state, and up to 24% in finite load state compared with those non-estimation schemes, performance enhancements in average drop rate and average number of transmission attempts per data frame delivery also validate the effectiveness of the proposed schelne.展开更多
The amount of needed control messages in wireless sensor networks(WSN)is affected by the storage strategy of detected events.Because broadcasting superfluous control messages consumes excess energy,the network lifespa...The amount of needed control messages in wireless sensor networks(WSN)is affected by the storage strategy of detected events.Because broadcasting superfluous control messages consumes excess energy,the network lifespan can be extended if the quantity of control messages is decreased.In this study,an optimized storage technique having low control overhead for tracking the objects in WSN is introduced.The basic concept is to retain observed events in internal memory and preserve the relationship between sensed information and sensor nodes using a novel inexpensive data structure entitled Ordered Binary Linked List(OBLL).Whenever an object passes over the sensor area,the recognizing sensor can immediately produce an OBLL along the object’s route.To retrieve the entire information,the OBLL can be traversed with logarithmic complexity which is much less than the traversing complexity of existing linked list structures.Performance evaluation and simulations were carried out to ensure that the suggested technique minimizes the number of messages and thus saving energy and extending the network life.展开更多
Link asymmetry in wireless mesh access networks(WMAN)of Mobile ad-hoc Networks(MANETs)is due mesh routers’transmission range.It is depicted as significant research challenges that pose during the design of network pro...Link asymmetry in wireless mesh access networks(WMAN)of Mobile ad-hoc Networks(MANETs)is due mesh routers’transmission range.It is depicted as significant research challenges that pose during the design of network protocol in wireless networks.Based on the extensive review,it is noted that the substantial link percentage is symmetric,i.e.,many links are unidirectional.It is identified that the synchronous acknowledgement reliability is higher than the asynchronous message.Therefore,the process of establishing bidirectional link quality through asynchronous beacons underrates the link reliability of asym-metric links.It paves the way to exploit an investigation on asymmetric links to enhance network functions through link estimation.Here,a novel Learning-based Dynamic Tree routing(LDTR)model is proposed to improve network performance and delay.For the evaluation of delay measures,asymmetric link,interference,probability of transmission failure is evaluated.The proportion of energy consumed is used for monitoring energy conditions based on the total energy capacity.This learning model is a productive way for resolving the routing issues over the network model during uncertainty.The asymmetric path is chosen to achieve exploitation and exploration iteratively.The learning-based Dynamic Tree routing model is utilized to resolve the multi-objective routing problem.Here,the simulation is done with MATLAB 2020a simulation environment and path with energy-efficiency and lesser E2E delay is evaluated and compared with existing approaches like the Dyna-Q-network model(DQN),asymmetric MAC model(AMAC),and cooperative asymmetric MAC model(CAMAC)model.The simulation outcomes demonstrate that the anticipated LDTR model attains superior network performance compared to others.The average energy consump-tion is 250 J,packet energy consumption is 6.5 J,PRR is 50 bits/sec,95%PDR,average delay percentage is 20%.展开更多
为解决无线体域网(Wireless Body Area Networks,WBAN)在人体运动过程中网络拓扑结构频繁变化导致链路质量和WBAN性能下降等问题,首先根据人体结构对WBAN网络拓扑进行优化,通过添加中继节点建立WBAN主干网,提供节点和hub之间相对稳定的...为解决无线体域网(Wireless Body Area Networks,WBAN)在人体运动过程中网络拓扑结构频繁变化导致链路质量和WBAN性能下降等问题,首先根据人体结构对WBAN网络拓扑进行优化,通过添加中继节点建立WBAN主干网,提供节点和hub之间相对稳定的链接,然后提出了适用于WBAN拓扑优化后的路由策略(Routing Protocol Based on Topology Optimization and Link Awareness,R-TOLA)。R-TOLA综合了链路质量感知和代价函数,通过调整主干网中继和节点中继获得最优化路径。仿真实验表明,基于拓扑结构优化和链路感知的R-TOLA协议和其他路由协议相比,在人体拓扑网络结构频繁变化的环境下具有网络生存时间更长、吞吐量更大等优势。展开更多
本文研究了智能反射面(IRS)辅助OFDMA(Orthogonal Frequency Division Multiple Access,正交频分多址接入)云无线接入网(C-RAN)的下行链路传输系统,其中基带处理单元(BBU)池通过多个远端射频头(RRH)与多个用户进行通信.RRH到用户的接入...本文研究了智能反射面(IRS)辅助OFDMA(Orthogonal Frequency Division Multiple Access,正交频分多址接入)云无线接入网(C-RAN)的下行链路传输系统,其中基带处理单元(BBU)池通过多个远端射频头(RRH)与多个用户进行通信.RRH到用户的接入链路采用OFDMA接入技术.对于BBU池到RRH,采用无线前传链路,并且部署多个IRS以增强链路传输能力.在BBU池和每个RRH发射功率约束下,本文提出通过联合优化前传链路和接入链路资源配置使下行用户和速率最大化.由于该资源配置问题是非凸的,首先采用连续凸逼近(SCA)对目标以及约束条件进行转换.其次,将转换后的问题拆分成三个子问题来交替性求解.最后,计算机仿真结果显示了所提出的联合资源分配方法与其他基准方案相比具有显著的传输性能增益.展开更多
基金supported by NSF of China under grants 61672321,61771289,61832012 and 61373027MBRP of Shandong Provincial Natural Science Foundation under grant ZR2019ZD10+1 种基金STPU of Shandong Province under grant J15LN05supported by NSFC under grants 90718030,and 90818002。
文摘Link scheduling has always been a fundamental problem in wireless networks for its direct impacts on the performance of wireless networks such as throughput capacity,transmission delay,lifetime,etc.Existing work is mainly established under graphbased models,which are not only impractical but also incorrect due to the essentially fading characteristics of signals.In this paper,we study the shortest link scheduling problem under two more realistic models,namely the signal to interference plus noise ratio(SINR)model and the Rayleigh fading model.We propose a centralized square-based scheduling algorithm(CSSA)with oblivious power control under the SINR model and prove its correctness under both the SINR model and the Rayleigh fading model.Furthermore,we extend CSSA and propose a distributed square-based scheduling algorithm(DSSA).Note that DSSA adopts CSMA/CA so that a wireless node can compete for the wireless channel before starting its communication.We also show theoretical analysis and conduct extensive simulations to exhibit the correctness and efficiency of our algorithms.
基金supported in part by Thailand Science Research and Innovation(TSRI)and National Research Council of Thailand(NRCT)via International Research Network Program(IRN61W0006)Thailand+1 种基金by Khon Kaen University,ThailandDuy Tan University,Vietnam。
文摘In this paper,we study the system performance of mobile edge computing(MEC)wireless sensor networks(WSNs)using a multiantenna access point(AP)and two sensor clusters based on uplink nonorthogonal multiple access(NOMA).Due to limited computation and energy resources,the cluster heads(CHs)offload their tasks to a multiantenna AP over Nakagami-m fading.We proposed a combination protocol for NOMA-MEC-WSNs in which the AP selects either selection combining(SC)or maximal ratio combining(MRC)and each cluster selects a CH to participate in the communication process by employing the sensor node(SN)selection.We derive the closed-form exact expressions of the successful computation probability(SCP)to evaluate the system performance with the latency and energy consumption constraints of the considered WSN.Numerical results are provided to gain insight into the system performance in terms of the SCP based on system parameters such as the number of AP antennas,number of SNs in each cluster,task length,working frequency,offloading ratio,and transmit power allocation.Furthermore,to determine the optimal resource parameters,i.e.,the offloading ratio,power allocation of the two CHs,and MEC AP resources,we proposed two algorithms to achieve the best system performance.Our approach reveals that the optimal parameters with different schemes significantly improve SCP compared to other similar studies.We use Monte Carlo simulations to confirm the validity of our analysis.
基金National Natural Science Foundation of China(No.61871072).
文摘This paper presents a 220-GHz-band 7-m wireless link with a 45-Gbps transmission data rate by using 16 quadrature amplitude modulation(16-QAM).Super-heterodyne transceiver modules are developed for transmission and reception of the modulated signals,which consist of a Schottky barrier diodes(SBD)based sub-harmonic mixer(SHM),an InP HEMT low noise amplifier(LNA),a waveguide band-pass filter(BPF),and a 108-GHz local oscillator(LO)multiplier chain.The transmitter features a peak transmit power of 1.41 dBm,and the IF frequency varies from 5 GHz to 20 GHz.Besides,the receiver features a conversion gain of 9.3 dB in average and a noise temperature of 3052.8 K.The measured results indicate that the transceiver modules enable data transmission of a 45-Gbps 16-QAM signal with Signal-Noise-Ratio(SNR)from 11.59 dB to 15.36 dB in a 7-m line-of-sight channel.
文摘Wireless sensor networks (WSNs) have many potential applications [1,2] and unique challenges. They usually consist of hundreds or thousands of small sensor nodes such as MICA2, which operate autonomously;conditions such as cost, invisible deployment and many application domains, lead to small size and resource limited sensors [3]. WSNs are susceptible to many types of link layer attacks [1] and most of traditional network security techniques are unusable on WSNs [3];This is due to wireless and shared nature of communication channel, untrusted transmissions, deployment in open environments, unattended nature and limited resources [1]. Therefore security is a vital requirement for these networks;but we have to design a proper security mechanism that attends to WSN’s constraints and requirements. In this paper, we focus on security of WSNs, divide it (the WSNs security) into four categories and will consider them, include: an overview of WSNs, security in WSNs, the threat model on WSNs, a wide variety of WSNs’ link layer attacks and a comparison of them. This work enables us to identify the purpose and capabilities of the attackers;furthermore, the goal and effects of the link layer attacks on WSNs are introduced. Also, this paper discusses known approaches of security detection and defensive mechanisms against the link layer attacks;this would enable IT security managers to manage the link layer attacks of WSNs more effectively.
基金Partly supported by the National Hi-Tech Research and Development Program of China (863 Program) (No.2003AA143040).
文摘A novel link adaptation scheme using linear Auto Regressive (AR) model channel estimation algorithm to enhance the performance of auto rate selection mechanism in IEEE 802.11g is proposed. This scheme can overcome the low efficiency caused by time interval between the time when Received Signal Strength (RSS) is measured and the time when rate is selected. The best rate is selected based on data payload length, frame retry count and the estimated RSS, which is estimated from recorded RSSs. Simulation results show that the proposed scheme enhances mean throughput performance up to 7%, in saturation state, and up to 24% in finite load state compared with those non-estimation schemes, performance enhancements in average drop rate and average number of transmission attempts per data frame delivery also validate the effectiveness of the proposed schelne.
文摘The amount of needed control messages in wireless sensor networks(WSN)is affected by the storage strategy of detected events.Because broadcasting superfluous control messages consumes excess energy,the network lifespan can be extended if the quantity of control messages is decreased.In this study,an optimized storage technique having low control overhead for tracking the objects in WSN is introduced.The basic concept is to retain observed events in internal memory and preserve the relationship between sensed information and sensor nodes using a novel inexpensive data structure entitled Ordered Binary Linked List(OBLL).Whenever an object passes over the sensor area,the recognizing sensor can immediately produce an OBLL along the object’s route.To retrieve the entire information,the OBLL can be traversed with logarithmic complexity which is much less than the traversing complexity of existing linked list structures.Performance evaluation and simulations were carried out to ensure that the suggested technique minimizes the number of messages and thus saving energy and extending the network life.
文摘Link asymmetry in wireless mesh access networks(WMAN)of Mobile ad-hoc Networks(MANETs)is due mesh routers’transmission range.It is depicted as significant research challenges that pose during the design of network protocol in wireless networks.Based on the extensive review,it is noted that the substantial link percentage is symmetric,i.e.,many links are unidirectional.It is identified that the synchronous acknowledgement reliability is higher than the asynchronous message.Therefore,the process of establishing bidirectional link quality through asynchronous beacons underrates the link reliability of asym-metric links.It paves the way to exploit an investigation on asymmetric links to enhance network functions through link estimation.Here,a novel Learning-based Dynamic Tree routing(LDTR)model is proposed to improve network performance and delay.For the evaluation of delay measures,asymmetric link,interference,probability of transmission failure is evaluated.The proportion of energy consumed is used for monitoring energy conditions based on the total energy capacity.This learning model is a productive way for resolving the routing issues over the network model during uncertainty.The asymmetric path is chosen to achieve exploitation and exploration iteratively.The learning-based Dynamic Tree routing model is utilized to resolve the multi-objective routing problem.Here,the simulation is done with MATLAB 2020a simulation environment and path with energy-efficiency and lesser E2E delay is evaluated and compared with existing approaches like the Dyna-Q-network model(DQN),asymmetric MAC model(AMAC),and cooperative asymmetric MAC model(CAMAC)model.The simulation outcomes demonstrate that the anticipated LDTR model attains superior network performance compared to others.The average energy consump-tion is 250 J,packet energy consumption is 6.5 J,PRR is 50 bits/sec,95%PDR,average delay percentage is 20%.
文摘为解决无线体域网(Wireless Body Area Networks,WBAN)在人体运动过程中网络拓扑结构频繁变化导致链路质量和WBAN性能下降等问题,首先根据人体结构对WBAN网络拓扑进行优化,通过添加中继节点建立WBAN主干网,提供节点和hub之间相对稳定的链接,然后提出了适用于WBAN拓扑优化后的路由策略(Routing Protocol Based on Topology Optimization and Link Awareness,R-TOLA)。R-TOLA综合了链路质量感知和代价函数,通过调整主干网中继和节点中继获得最优化路径。仿真实验表明,基于拓扑结构优化和链路感知的R-TOLA协议和其他路由协议相比,在人体拓扑网络结构频繁变化的环境下具有网络生存时间更长、吞吐量更大等优势。
文摘本文研究了智能反射面(IRS)辅助OFDMA(Orthogonal Frequency Division Multiple Access,正交频分多址接入)云无线接入网(C-RAN)的下行链路传输系统,其中基带处理单元(BBU)池通过多个远端射频头(RRH)与多个用户进行通信.RRH到用户的接入链路采用OFDMA接入技术.对于BBU池到RRH,采用无线前传链路,并且部署多个IRS以增强链路传输能力.在BBU池和每个RRH发射功率约束下,本文提出通过联合优化前传链路和接入链路资源配置使下行用户和速率最大化.由于该资源配置问题是非凸的,首先采用连续凸逼近(SCA)对目标以及约束条件进行转换.其次,将转换后的问题拆分成三个子问题来交替性求解.最后,计算机仿真结果显示了所提出的联合资源分配方法与其他基准方案相比具有显著的传输性能增益.
基金National Basic Research Program of China (973 Program) under Grant No. 2006CB303001National High Technology Research and Development Program of China (863 Program) under Grant No. 2007AA01Z2A9+1 种基金CAS Knowledge Innovation Program under Grant No. KGCX2-YW-110-3CAS-Croucher Funding Scheme for Joint Laboratories and Key External Cooperation Program of the Chinese Academy of Sciences under Grant No. GJHZ200819