Shorelines are widespread and lake deposits and lake geomorphology are welldeveloped on the northern Tibetan Plateau. Through field observations of lacustrine deposits of NamCo-the highest and largest Quaternary lake ...Shorelines are widespread and lake deposits and lake geomorphology are welldeveloped on the northern Tibetan Plateau. Through field observations of lacustrine deposits of NamCo-the highest and largest Quaternary lake in Tibet, the authors found four-step shore terracescomposed of sands and clays with well-developed horizontal bedding and 3-12 m, 15-22 m, 25-30 m and35-45 m higher than the lake surface respectively, lacustrine deposits resting on the bedrocks and60-150 m higher than the lake surface, and up to approx 50 levees composed of oblate lakeshoregravels. Moreover they found lacustrine and lakeshore deposits making up the terraces and levees onthe bottoms of wide dividing valleys connecting Nam Co with the Rencoyuema, Rencogongma and Jiuru Conorthwest of Nam Co (the valley bottoms are 20 m, 90 m and 60 m higher than the above-mentionedthree lakes) and on slopes north of it, i.e. terraces II and III of Nam Co. Thus they confirm thatNam Co and Ring Co-Jiuru Co had connected with each other several times, i.e. formed a unified largelake several times, rather than had been different lakes connected only by river channels. Fromindications such as the distribution of the highest shoreline and lake deposits and geomorphology,the authors conclude that the total area of the old large lakes on the northern Tibetan Plateau is afew times larger than that of the modern lakes and that the last-stage old large lakes formed inthe interglacial interval of the last glaciation.展开更多
Based upon the 1970 aero-photo topographic map, and TM/ETM satellite images taken in 1991 and 2000, the authors artificially interpreted boundaries of lake and glaciers in Nam Co Catchment, and quantified lake-glacier...Based upon the 1970 aero-photo topographic map, and TM/ETM satellite images taken in 1991 and 2000, the authors artificially interpreted boundaries of lake and glaciers in Nam Co Catchment, and quantified lake-glacier area variations in different stages by "integrated method" with the support of GIS. Results show that from 1970 to 2000, lake area increased from 1942.34 km^2 to 1979.79 km^2 at a rate of 1.27 km^2/a, while glacier area decreased from 167.62 km^2 to 141.88 km^2 at a rate of 0.86 km^2/a. The increasing rate of lake in 1991-2000 was 1.76 km^2/a that was faster than 1.03 km^2/a in 1970-1991, while in the same period of time, the shrinking rates of glaciers were 0.97 km^2/a and 0.80 km^2/a respectively. Important factors, relevant to lake and glacier response to the climate, such as air temperature, precipitation, potential evapotranspiration and their values in warm and cold seasons, were discussed. The result suggests that temperature increasing is the main reason for the accelerated melting of glaciers. Lake expansion is mainly induced by the increase of the glacier melting water, increase of precipitation and obvious decrease of potential evapotranspiration. Precipitation, evaporation and their linkages with lake enlargement on regional scale need to be thoroughly studied under the background of global warming and glacier retreating.展开更多
A 332-cm long lacustrine core was drilled in the Nam Co in the central-southern part of the Tibetan Plateau. From the core, 15 species of ostracods (Crustacea: Ostracoda), which belong to 6 genera have been identif...A 332-cm long lacustrine core was drilled in the Nam Co in the central-southern part of the Tibetan Plateau. From the core, 15 species of ostracods (Crustacea: Ostracoda), which belong to 6 genera have been identified. According to the variations of the ostracod assemblages and the ostracods ecological features, which are sensitive to the changing environment, three main stages can be distinguished as follows: Stage Ⅰ was from 8400 to 6800 a BP, during which the climate was cold-humid, and the lake depth changed from shallow to deep. Stage Ⅱ was from 6400 to 2500 a BP, during which the climate changed from warm-humid to cold-humid, and then to cold-dry. The lake depth gradually became deep. The shifting of climate, from wet-cold to dry-cold during this period, had constructed the basis of present environment in the Nam Co. Stage Ⅲ was from 2500 a BP to the present, which showed a trait of lake depth increasing. At the earlier period of this stage, the climate kept as cold-dry as that in the former stage, but the salinity of the lake increased. At the later period of this stage, the degree of cold-dry was enhanced, and the activities of land surface runoff tended to be weakened. Our research also found that the peak values of ostracods with black shell was coherent with the maximum production of the ostracods, and agreed with the increasing sedimentary water dynamics. This indicated that the ostracods with black shell was simulta- neous with the high prolificacy of ostracod, and transported from other places. The abun- dance of Candonajuvenile shells reflected the high mortality of that kind of ostracods under an unfavorable condition. This was probably a result of the rapid change of water dynamics of sedimentary environment.展开更多
In lacustrine sediments,aragonite is a widespread mineral,whereas monohydrocalcite is a rare carbonate mineral. In the cold and high-attitude Xizang (Tibetan) Plateau,where aragonite has been commonly found in lacustr...In lacustrine sediments,aragonite is a widespread mineral,whereas monohydrocalcite is a rare carbonate mineral. In the cold and high-attitude Xizang (Tibetan) Plateau,where aragonite has been commonly found in lacustrine sediments,there is no aragonite,but low-Mg calcite,monohydrocalcite and trace dolomite. The lake receives solutes primarily from surface runoffs and remains fairly constant water chemistry for a long time. The total CaCO3 percentage in sediments could be controlled by evaporation and inflow of detrital materials. The absence of aragonite is unusual when compared to other lacustrine sediments from the Tibetan Plateau. This could be due to low Ca/Mg ratio,low salinity,low Mg and Ca concentration. Monohydrocalcite might precipitate from the lake water mediated by biological activities. Low-Mg calcite originated from minor ostracoda shell and the precipitation of lake water with biological activities.展开更多
Tibetan lake levels are sensitive to global change,and their variations have a large impact on the environment,local agriculture and animal husbandry practices.While many remote sensing data of Tibetan lake level chan...Tibetan lake levels are sensitive to global change,and their variations have a large impact on the environment,local agriculture and animal husbandry practices.While many remote sensing data of Tibetan lake level changes have been reported,few are from in-situ measurements.This note presents the first in-situ lake level time series of the central Tibetan Plateau.Since 2005,daily lake level observations have been performed at Lake Nam Co,one of the largest on the Tibetan Plateau.The interannual lake level variations show an overall increasing trend from 2006 to 2014,a rapid decrease from 2014 to 2017,and a surge from 2017 to 2018.The annual average lake level of the hydrological year(May−April)rose 66 cm from 2006 to 2014,dropped 59 cm from 2014 to 2017,and increased 20 cm from 2017 to 2018,resulting in a net rise of 27 cm or an average rate of about 2 cm per year.Compared to the annual average lake level based on the calendar year,it is better to use the annual average lake level based on the hydrological year to determine the interannual lake level changes.As the lake level was stable in May,it is appropriate to compare May lake levels when examining interannual lake level changes with fewer data.Overall,remote sensing results agree well with the in-situ lake level observations;however,some significant deviations exist.In the comparable 2006−2009 period,the calendar-year average lake level observed insitu rose by 10−11 cm per year,which is lower than the ICESat result of 18 cm per year.展开更多
We present a list of living and (sub) fossil Ostracoda (Crustacea) from Holocene sediments from Lake NamCo,Southern Tibet, including descriptions, distribution and ecological data of the important taxa from the Nam Co...We present a list of living and (sub) fossil Ostracoda (Crustacea) from Holocene sediments from Lake NamCo,Southern Tibet, including descriptions, distribution and ecological data of the important taxa from the Nam Cocatchment. Species associations from lake surface sediments, sediment cores and outcrop samples consist of eight speciesincluding Candona candida ( O.F. Müller, 1776 ) , Candona xizangensis ( Huang, 1982 ) , Eucypris afghanistanensis( Hartmann, 1964) , Fabaeformiscandona danielopoli ( Yin & Martens, 1997 ) , Ilyocypris cf. mongolica ( Martens, 1991 ) ,? Leucocythere dorsotuberosa ( Huang, 1982 ) , Leucocytherella sinensis ( Huang, 1982 ) and Limnocythere inopinata ( Baird,1843). The dominant species are ? L. dorsotuberosa and L. sinensis. They show morphological variations with different degreesof ornamentation. We regard the variable noding and rib formation as intraspecific variability possibly driven byenvironmental factors. In general,the number and degree of ribs increases with water depth in ? L. dorsotuberosa. Thus,theornamentation may present a means to reconstruct(paleo) water depths. Our list is intended to serve as a taxonomical andpaleoecological primer for future paleolimnological work.展开更多
This paper presents an assessment of the Soil and Water Assessment Tool(SWAT) on a glaciated(Qugaqie) and a non-glaciated(Niyaqu) subbasin of the Nam Co Lake. The Nam Co Lake is located in the southern Tibetan Plateau...This paper presents an assessment of the Soil and Water Assessment Tool(SWAT) on a glaciated(Qugaqie) and a non-glaciated(Niyaqu) subbasin of the Nam Co Lake. The Nam Co Lake is located in the southern Tibetan Plateau, two subbasins having catchment areas of 59 km^2 and 388 km^2, respectively. The scores of examined evaluation indices(i.e., R^2, NSE, and PBIAS) established that the performance of the SWAT model was better on the monthly scale compared to the daily scale. The respective monthly values of R^2, NSE, and PBIAS were 0.94, 0.97, and 0.50 for the calibration period while 0.92, 0.88, and -8.80 for the validation period. Glacier melt contribution in the study domain was simulated by using the SWAT model in conjunction with the Degree Day Melt(DDM) approach. The conjunction of DDM with the SWAT Model ensued improved results during both calibration(R^2=0.96, NSE=0.95, and PBIAS=-13.49) and validation (R^2=0.97, NSE=0.96, and PBIAS=-2.87) periods on the monthly time scale. Average contribution(in percentage) of water balance components to the total streamflow of Niyaqu and Qugaqie subbasins was evaluated. We found that the major portion(99.45%) of the streamflow in the Niyaqu subbasin was generated by snowmelt or rainfall surface runoff(SURF_Q), followed by groundwater(GW_Q, 0.47%), and lateral(LAT_Q, 0.06%) flows. Conversely, in the Qugaqie subbasin, major contributor to the streamflow(79.63%) was glacier melt(GLC_Q), followed by SURF_Q(20.14%), GW_Q(0.13%), and LAT_Q(0.089%). The contribution of GLC_Q was the highest(86.79%) in July and lowest(69.95%) in September. This study concludes that the performance of the SWAT model in glaciated catchment is weak without considering glacier component in modeling; however, it performs reasonably well in non-glaciated catchment. Furthermore, the temperature index approach with elevation bands is viable in those catchments where streamflows are driven by snowmelt. Therefore, it is recommended to use the SWAT Model in conjunction with DDM or energy base model to simulate the glacier melt contribution to the total streamflow. This study might be helpful in quantification and better management of water resources in data scarce glaciated regions.展开更多
The Earth’s surface kinematics and deformation are fundamental to understanding crustal evolution.An effective research approach is to estimate regional motion field and deformation fields based on modern geodetic ne...The Earth’s surface kinematics and deformation are fundamental to understanding crustal evolution.An effective research approach is to estimate regional motion field and deformation fields based on modern geodetic networks.If the discrete observed velocity field is obtained,the velocity related fields,such as dilatation rate and maximum shear strain rate,can be estimated by applying varied mathematical approaches.This study applied Akaike's Bayesian Information Criterion(ABIC)method to calculate strain rate fields constrained by GPS observations in the southeast Tibetan Plateau.Comparison with results derived from other three methods revealed that our ABIC-derived strain rate fields were more precise.The maximum shear strain rate highlighted the Xianshuihe–Xiaojiang fault system as the main boundary for the outward migration of material in southeastern Tibet,indicating rotation of eastern Tibet material around the eastern Himalaya rather than whole extrusion along a fixed channel.Additionally,distinct dilatation rate patterns in the northeast and southwest regions of the fault system were observed.The northeast region,represented by the Longmenshan area,exhibited negative dilatational anomalies;while the southwest region,represented by the Jinsha River area north of 29°N,displayed positive dilatational anomalies.This indicates compression in the former and extension in the latter.Combined with deep geophysical observations,we believe that the upper and lower crusts of the Jinsha River area north of 29°N are in an entire expanding state,probably caused by the escape-drag effect of material.The presence of a large,low-viscosity region south of 29°N may not enable the entire escape of the crust,but instead result in a differential escape of the lower crust faster than the upper crust.展开更多
Based on the Tibet Autonomous Region's statistic yearbooks and the data fromthe two household surveys in 2002 and 2004, this paper has comprehensively analyzed the pattern ofchanges on the farmers and herdsmen'...Based on the Tibet Autonomous Region's statistic yearbooks and the data fromthe two household surveys in 2002 and 2004, this paper has comprehensively analyzed the pattern ofchanges on the farmers and herdsmen's income sources in the Tibet Autonomous Region since 1990 withthe main findings as follows; (1) The change of income from the labor payment is the fastest; (2)There is no regular pattern of income variation for the household economic activities, the farmersand herdsmen's household incomegeneration projects are impacted by the elements like prices andreturns, and there is a lack of appropriate direction; (3) The income structure of labor paymentshows that the income from the farmers and herdsmen working outside grows fastest; (4) The incomefrom the farmers and herdsmen's labor payment correlate positively to their net income per capita;(5) From the perspective of the variation by region, labor payment income has changed fastest in thecounties of Rutok, Nyerong and Khangmar comparedthe data from the household survey in 2002 withthat of 2004.展开更多
Through an in-depth analysis of the per capita net income of rural residents in Nyingchi City,it was known that the per capita net income of rural residents in Nyingchi City was increasing at high speed in recent 10 y...Through an in-depth analysis of the per capita net income of rural residents in Nyingchi City,it was known that the per capita net income of rural residents in Nyingchi City was increasing at high speed in recent 10 years. However,the wage income,household operating income,and agricultural income gap constitute the major factors influencing the gap of the per capita net income of rural residents in Nyingchi City. Finally,it came up with recommendations including promoting the reasonable flow of labor to the secondary and tertiary industries,increasing the wage income and transfer income of rural residents,accelerating the construction of small towns in rural areas,promoting the development of rural cooperatives,implementing the strategy of " benefiting farmers and strengthening tourism",promoting integration of agriculture and eco-tourism,promoting the development of modern agriculture,and expanding diversified production income of farmers.展开更多
Two suites of mafic dykes,T1193-A and T1194-A,outcrop in Gyangze area,southeast Tibet.They are in the area of Comei LIP and have indistinguishable field occurrences with two other dykes in Gyangze,T0902 dyke with 137....Two suites of mafic dykes,T1193-A and T1194-A,outcrop in Gyangze area,southeast Tibet.They are in the area of Comei LIP and have indistinguishable field occurrences with two other dykes in Gyangze,T0902 dyke with 137.7±1.3 Ma zircon age and T0907 dyke with 142±1.4 Ma zircon age reported by Wang YY et al.(2016),indicating coeval formation time.Taking all the four diabase dykes into consideration,two different types,OIB-type and weak enriched-type,can be summarized.The“OIB-type”samples,including T1193-A and T0907 dykes,show OIB-like geochemical features and have initial Sr-Nd isotopic values similar with most mafic products in Comei Large Igneous Provinces(LIP),suggesting that they represent melts directly generated from the Kerguelen mantle plume.The“weak enriched-type”samples,including T1194-A and T0902 dykes,have REEs and trace element patterns showing withinplate affinity but have obvious Nb-Ta-Ti negative anomalies.They show uniform lowerεNd(t)values(−6‒−2)and higher 87Sr/86Sr(t)values(0.706‒0.709)independent of their MgO variation,indicating one enriched mantle source.Considering their closely spatial and temporal relationship with the widespread Comei LIP magmatic products in Tethyan Himalaya,these“weak enriched-type”samples are consistent with mixing of melts from mantle plume and the above ancient Tethyan Himalaya subcontinental lithospheric mantle(SCLM)in different proportions.These weak enriched mafic rocks in Comei LIP form one special rock group and most likely suggest large scale hot mantle plume-continental lithosphere interaction.This process may lead to strong modification of the Tethyan Himalaya lithosphere in the Early Cretaceous.展开更多
Background:The Black-necked Crane (Grus nigricollis)is an internationally threatened crane living on the plateau, mainly in winter, in the Yarlung Tsangpo River basin in Tibet,western China. In the past five years,som...Background:The Black-necked Crane (Grus nigricollis)is an internationally threatened crane living on the plateau, mainly in winter, in the Yarlung Tsangpo River basin in Tibet,western China. In the past five years,some economic development projects have been conducted in this area,posing potential threats to the wintering populations of the cranes and their habitats. Therefore, the current population dynamics of wintering Black-necked Cranes and habitat suitability in the Yarlung Tsangpo River basin were investigated. Methods: Twenty counties were surveyed using the line transect method in December 2017 and January 2018, and we recorded the location,flock size,number of individuals,habitat types and presence of human disturbance in which they occurred.We compared the results from the middle wintering period in this survey with those from 2014. Results: The highest number of cranes recorded was 8291,and the results showed that the cranes were mainly distributed in Lhaze, Namling, Samzhubze, and Lhunzub.A total of 577 and 495 flocks were recorded in the early and middle wintering periods, respectively. In the early wintering period,there were signi ficant differences in the number of individuals across the di fferent habitats,with crop stubble land and plowed land representing more than 30% of the total habitat utilization.In the middle wintering period, there were also signi ficant differences in the number of individuals, and the utilization of crop stubble land represented over 60% of the total. Conclusions: Wintering Black-necked Cranes mainly fed on spilled grains in stubble habitat after harvest. In the middle wintering period, some of the farmlands were plowed and irrigated,which resulted in food shortages in these areas,and the cranes tended to gather in mixed flocks of large size instead of as a single family.There were still considerable regional wintering populations decreases in Quxu,Nedong,and Sakya in 2018 compared with 2014,and these decreases were mainly due to some recently emerging threats,including farmlands being converted into areas of greenhouse cultivation,highway and railway construction, river dredging,the rapid development of the manufacturing and mining industries,and the lack of protection of important wintering sites.展开更多
Magmatic periodicity is recognized in continental arcs worldwide, but the mechanism responsible for punctuated arc magmatism is controversial. Continental arcs in the Trans-Himalayan orogenic system display episodic m...Magmatic periodicity is recognized in continental arcs worldwide, but the mechanism responsible for punctuated arc magmatism is controversial. Continental arcs in the Trans-Himalayan orogenic system display episodic magmatism and the most voluminous flare-up in this system was in early Eocene during the transition from subduction to collision. The close association of the flare-up with collision is intriguing. Our study employs zircon Lu-Hf and bulk rock Sr-Nd isotopes, along with mineral geochemistry, to track the melt sources of the Nymo intrusive complex and the role of mantle magma during the early Eocene flare-up of the Gangdese arc, Tibet. The Nymo intrusive complex is composed of gabbronorite, diorite, quartz diorite, and granodiorite which define an arc-related calc-alkaline suite. Zircon U-Pb ages reveal that the complex was emplaced between ~50–47 Ma. Zircon Hf isotopes yield εHf(t) values of 8.2–13.1, while whole-rock Sr and Nd isotopes yield εNd(t) values of 2.7–6.5 indicative of magmatism dominated by melting of a juvenile mantle source with only minor crustal assimilation(~15%–25%) as indicated by assimilation and fractional crystallization modeling. Together with published data, the early Eocene magmatic flare-up was likely triggered by slab breakoff of subducted oceanic lithosphere at depths shallower than the overriding plate. The early Eocene magmatic flare-up may have contributed to crustal thickening of the Gangdese arc. This study provides important insights into the magmatic flare-up and its significant role in the generation of large batholiths during the transition from subduction to collision.展开更多
Turbidites fromthe Shiquanhe–Namco OphioliteMélange Zone(SNMZ)record critical information about the tectonic affinity of the SNMZand the evolutionary history of theMeso-Tethys Ocean in Tibet.This paper reports s...Turbidites fromthe Shiquanhe–Namco OphioliteMélange Zone(SNMZ)record critical information about the tectonic affinity of the SNMZand the evolutionary history of theMeso-Tethys Ocean in Tibet.This paper reports sedimentologic,sandstone petrographic,zircon U-Pb geochronologic,and clastic rocks geochemical data of newly identified turbidites(Asa Formation)in the Asa Ophiolite Mélange.The youngest ages of detrital zircon from the turbiditic sandstone samples,together with~115 Ma U-Pb concordant age from the tuff intercalation within the Asa Formation indicate an Early Cretaceous age.The sandstone mineral modal composition data show that the main component is quartz grains and the minor components are sedimentary and volcanic fragments,suggesting that the turbidites were mainly derived froma recycled orogen provenancewith a minor addition of volcanic arc materials.The detrital U-Pb zircon ages of turbiditic sandstones yield main age populations of 170–120 Ma,300–220 Ma,600–500 Ma,1000–700 Ma,1900–1500 Ma,and~2500 Ma,similar to the ages of the Qiangtang Terrane(age peak of 600–500 Ma,1000–900 Ma,~1850 Ma and~2500 Ma)and the accretionary complex in the Bangong–Nujiang Ophiolite Zone(BNMZ)rather than the age of the Central Lhasa Terrane(age peak of~300 Ma,~550 Ma and~1150 Ma).The mineral modal compositions,detrital U-Pb zircon ages,and geochemical data of clastic rocks suggest that the Asa Formation is composed of sediments primarily recycled from the Jurassic accretionary complex within the BNMZ with the secondary addition of intermediate-felsic island arc materials from the South Qiangtang Terrane.Based on our new results and previous studies,we infer that the SNMZ represents a part of the Meso-Tethys Suture Zone,rather than a southward tectonic klippe of the BNMZ or an isolated ophiolitic mélange zone within the Lhasa Terrane.The Meso-Tethys Suture Zone records the continuous evolutionary history of the northward subduction,accretion,arc-Lhasa collision,and Lhasa-Qiangtang collision of the Meso-Tethys Ocean from the Early Jurassic to the Early Cretaceous.展开更多
Geoelectrical investigations in Tibetan Plateau show that there are two high conductivity layers (HCLs) in the crust of southern Tibetan Plateau. The first HCL is at a depth of 15~20km, and the second at 45~60km. In...Geoelectrical investigations in Tibetan Plateau show that there are two high conductivity layers (HCLs) in the crust of southern Tibetan Plateau. The first HCL is at a depth of 15~20km, and the second at 45~60km. In the central region of the Plateau, such as north Qiangtang and Bayan Har, there is only one HCL in crust at the depth about 15~20km.The origin of HCL in upper crust of southern Tibet is mainly caused by free saline aqueous fluids. The seismic investigation by project INDEPTH in southern Tibet demonstrates that the bright spot reflection at about 15km depth is caused by 10% volume of free aqueous fluids (Makovsky and Klemperer, 1999). Seismic and heat flow research indicates the temperature in 15km depth of Tibet is from 400℃ to 650℃. The high concentration of Cl - in water of geothermal spring in southern Tibet means that the aqueous fluid in crust is saline water. The experiment on conductivity of NaCl solution shows that the conductivity is more than 4.5 S·m -1 under 400MPa and 300~650℃ condition (Quist and Marshall, 1968). This p\|T condition corresponds to the pressure and temperature range at 15~20km depth of Tibet.展开更多
Widely distributed in Gyangzê-Chigu area, southern Tibet, NW- and nearly E-W-trending diabase(gabbro)-gabbro diorite dykes are regarded as the product of the large-scale spreading of the late Neo-Tethys Ocean. ...Widely distributed in Gyangzê-Chigu area, southern Tibet, NW- and nearly E-W-trending diabase(gabbro)-gabbro diorite dykes are regarded as the product of the large-scale spreading of the late Neo-Tethys Ocean. In order to constrain the emplacement age of these dykes, zircons of two samples from diabases in Nagarzê were dated by using the U-Pb SHRIMP method. Two nearly the same weighted mean ^206pb/^23SU ages were obtained in this paper, which are 134.9±1.8 Ma (MSWD=0.65) and 135.5 ± 2.1 Ma (MSWD=1.40), respectively. They not only represent the crystallization age of the diabase, but also documented an important spreading event of the Neo-Tethys Ocean during the late Jurassic and early Cretaceous. This dating result is of great significance to reconstruct the temporal framework of the late Neo-Tethys Ocean in the Qinghai-Tibet Plateau.展开更多
March 28 of this year is the second Tibetan Serfs Emancipation Day. People of all nationalities in Tibet marked the day by hoisting the national flag and by singing and dancing. Smiles were on every face and a festive...March 28 of this year is the second Tibetan Serfs Emancipation Day. People of all nationalities in Tibet marked the day by hoisting the national flag and by singing and dancing. Smiles were on every face and a festive atmosphere pervaded the snowcovered plateau region.展开更多
This is a new report on the early Eocene radiolarian fauna from the Sangdanlin section in the Gyirong region, along the southern margin of the Yarlung Zangbo Suture Zone. The Sangdanlin section measured in this study ...This is a new report on the early Eocene radiolarian fauna from the Sangdanlin section in the Gyirong region, along the southern margin of the Yarlung Zangbo Suture Zone. The Sangdanlin section measured in this study is divided into three lithostratigraphic units from bottom to top: the Zongzhuo, Sangdanlin, and Zheya formations. Abundant radiolarian fossils were obtained from the Sangdanlin section and 54 species of 30 genera were identified and assigned as follows: Cryptamphorella conara-C. macropora the late Cretaceous Zone and Amphis_phaera coronate, Bur)ella tetradica-Bekoma campechensis, and B.bidartensis-B. divaricata the Paleocene-early Eocene Interval Zones. The Paleocene- early Eocene radiolarian zones are comparable to the radiolarian zones RP4-RP8 in New Zealand. Based on the data of radiolaria and lithofacies, it is suggested that the Zongzhuo Formation should be deposited along the base of the north-facing, continental slope of the Greater Indian continental margin, and the Sangdanlin Formation should be a deep marine, sedimentary sequence located in a foreland basin. The early Eocene radiolarian fauna in the Sangdanlin Formation constrains the initial age of the India-Asia collision to no later than 53.6 Ma.展开更多
One of the new directions in the field of Cretaceous research is to elucidate the mechanism of the sedimentary transition from the Cretaceous black shales to oceanic red beds. A chemical sequential extraction method w...One of the new directions in the field of Cretaceous research is to elucidate the mechanism of the sedimentary transition from the Cretaceous black shales to oceanic red beds. A chemical sequential extraction method was applied to these two types of rocks from southern Tibet to investigate the burial records of reactive iron. Results indicate that carbonate-associated iron and pyrite are relatively enriched in the black shales, but depleted or absent in red beds. The main feature of the reactive iron in the red beds is relative enrichment of iron oxides (largely hematite), which occurred during syn-depostion or early diagenesis. The ratio between iron oxides and the total iron indicates an oxygen-enriched environment for red bed deposition. A comparison between the reactive iron burial records and proxies of paleo-productivity suggests that paleo-productivity decreases when the ratio between iron oxides and the total iron increases in the red beds. This phenomenon could imply that the relationship between marine redox and productivity might be one of the reasons for the sedimentary transition from Cretaceous black shale to oceanic red bed deposition.展开更多
A systematic sedimentological and chronological study of typical Paleogene basins in eastcentral Tibet suggests that the depositional characteristics of extensively developed huge-bedded, purplish-red coarse clastic r...A systematic sedimentological and chronological study of typical Paleogene basins in eastcentral Tibet suggests that the depositional characteristics of extensively developed huge-bedded, purplish-red coarse clastic rocks formed in a tectonic setting of regional thrusting and strike-slipping represent a typical dry and hot subaerial alluvial fan environment formed in a proximal and rapidaccumulating sediment body in debris flows and a fan-surface braided river. Combining results from basin-fill sequences, sequences of coarse clastic rocks, fauna and sporo-pollen associations and thermochronological data, it is conduded that the coarse clastic rocks formed in the period of 54.2- 24.1 Ma, nearly coeval with the formation of Paleogene basins in the northern (Nangqen-Yushu thrust belt), middle (Batang-Lijiang fault belt), and disintegration of large basins in the southern (LanpingSimao fold belt) segments of Tibet. The widespread massive-bedded coarse clastic rocks, fold thrusting and strike-slip, thrust shortening, and igneous activities in the Paleogene basins of eastcentral Tibet indicate that an early diachronous tectonic uplift might have occurred in the Tibetan Plateau from Middle Eocene to Oligocene, related to the initial stage of collision of the Indian and Asian plates.展开更多
文摘Shorelines are widespread and lake deposits and lake geomorphology are welldeveloped on the northern Tibetan Plateau. Through field observations of lacustrine deposits of NamCo-the highest and largest Quaternary lake in Tibet, the authors found four-step shore terracescomposed of sands and clays with well-developed horizontal bedding and 3-12 m, 15-22 m, 25-30 m and35-45 m higher than the lake surface respectively, lacustrine deposits resting on the bedrocks and60-150 m higher than the lake surface, and up to approx 50 levees composed of oblate lakeshoregravels. Moreover they found lacustrine and lakeshore deposits making up the terraces and levees onthe bottoms of wide dividing valleys connecting Nam Co with the Rencoyuema, Rencogongma and Jiuru Conorthwest of Nam Co (the valley bottoms are 20 m, 90 m and 60 m higher than the above-mentionedthree lakes) and on slopes north of it, i.e. terraces II and III of Nam Co. Thus they confirm thatNam Co and Ring Co-Jiuru Co had connected with each other several times, i.e. formed a unified largelake several times, rather than had been different lakes connected only by river channels. Fromindications such as the distribution of the highest shoreline and lake deposits and geomorphology,the authors conclude that the total area of the old large lakes on the northern Tibetan Plateau is afew times larger than that of the modern lakes and that the last-stage old large lakes formed inthe interglacial interval of the last glaciation.
基金National Basic Research Program of China, No.2005CB422002 National Natural Science Foundation of China, No.40331006+2 种基金 No.40571172 Knowledge Innovation Project of the CAS, No.KZCX3-SW-339 The authors would like to thank the National Climatic Data Center of China Meteorological Administration (CMA) for providing climatic data for this study.
文摘Based upon the 1970 aero-photo topographic map, and TM/ETM satellite images taken in 1991 and 2000, the authors artificially interpreted boundaries of lake and glaciers in Nam Co Catchment, and quantified lake-glacier area variations in different stages by "integrated method" with the support of GIS. Results show that from 1970 to 2000, lake area increased from 1942.34 km^2 to 1979.79 km^2 at a rate of 1.27 km^2/a, while glacier area decreased from 167.62 km^2 to 141.88 km^2 at a rate of 0.86 km^2/a. The increasing rate of lake in 1991-2000 was 1.76 km^2/a that was faster than 1.03 km^2/a in 1970-1991, while in the same period of time, the shrinking rates of glaciers were 0.97 km^2/a and 0.80 km^2/a respectively. Important factors, relevant to lake and glacier response to the climate, such as air temperature, precipitation, potential evapotranspiration and their values in warm and cold seasons, were discussed. The result suggests that temperature increasing is the main reason for the accelerated melting of glaciers. Lake expansion is mainly induced by the increase of the glacier melting water, increase of precipitation and obvious decrease of potential evapotranspiration. Precipitation, evaporation and their linkages with lake enlargement on regional scale need to be thoroughly studied under the background of global warming and glacier retreating.
基金National Basic Research Program of China, No.2005CB422002National Natural Science Foundation of China, No.40571172The sixth framework project BRAHMATWINN, No.FP6-036952
文摘A 332-cm long lacustrine core was drilled in the Nam Co in the central-southern part of the Tibetan Plateau. From the core, 15 species of ostracods (Crustacea: Ostracoda), which belong to 6 genera have been identified. According to the variations of the ostracod assemblages and the ostracods ecological features, which are sensitive to the changing environment, three main stages can be distinguished as follows: Stage Ⅰ was from 8400 to 6800 a BP, during which the climate was cold-humid, and the lake depth changed from shallow to deep. Stage Ⅱ was from 6400 to 2500 a BP, during which the climate changed from warm-humid to cold-humid, and then to cold-dry. The lake depth gradually became deep. The shifting of climate, from wet-cold to dry-cold during this period, had constructed the basis of present environment in the Nam Co. Stage Ⅲ was from 2500 a BP to the present, which showed a trait of lake depth increasing. At the earlier period of this stage, the climate kept as cold-dry as that in the former stage, but the salinity of the lake increased. At the later period of this stage, the degree of cold-dry was enhanced, and the activities of land surface runoff tended to be weakened. Our research also found that the peak values of ostracods with black shell was coherent with the maximum production of the ostracods, and agreed with the increasing sedimentary water dynamics. This indicated that the ostracods with black shell was simulta- neous with the high prolificacy of ostracod, and transported from other places. The abun- dance of Candonajuvenile shells reflected the high mortality of that kind of ostracods under an unfavorable condition. This was probably a result of the rapid change of water dynamics of sedimentary environment.
基金supported by the National Basic Research Program of China (2005CB422000)the National Natural Science Foundation of China (40801075, 40830743, 40701194, 40671023, and 40730101)
文摘In lacustrine sediments,aragonite is a widespread mineral,whereas monohydrocalcite is a rare carbonate mineral. In the cold and high-attitude Xizang (Tibetan) Plateau,where aragonite has been commonly found in lacustrine sediments,there is no aragonite,but low-Mg calcite,monohydrocalcite and trace dolomite. The lake receives solutes primarily from surface runoffs and remains fairly constant water chemistry for a long time. The total CaCO3 percentage in sediments could be controlled by evaporation and inflow of detrital materials. The absence of aragonite is unusual when compared to other lacustrine sediments from the Tibetan Plateau. This could be due to low Ca/Mg ratio,low salinity,low Mg and Ca concentration. Monohydrocalcite might precipitate from the lake water mediated by biological activities. Low-Mg calcite originated from minor ostracoda shell and the precipitation of lake water with biological activities.
基金This work was supported by the National Natural Science Foundation of China(Grant No.41771092)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA20020102)+1 种基金the National Key Research and Development Program of China(2017YFA0603101)the Second Tibetan Plateau Scientific Expedition and Research Program(Grant No.2019QZKK0202).
文摘Tibetan lake levels are sensitive to global change,and their variations have a large impact on the environment,local agriculture and animal husbandry practices.While many remote sensing data of Tibetan lake level changes have been reported,few are from in-situ measurements.This note presents the first in-situ lake level time series of the central Tibetan Plateau.Since 2005,daily lake level observations have been performed at Lake Nam Co,one of the largest on the Tibetan Plateau.The interannual lake level variations show an overall increasing trend from 2006 to 2014,a rapid decrease from 2014 to 2017,and a surge from 2017 to 2018.The annual average lake level of the hydrological year(May−April)rose 66 cm from 2006 to 2014,dropped 59 cm from 2014 to 2017,and increased 20 cm from 2017 to 2018,resulting in a net rise of 27 cm or an average rate of about 2 cm per year.Compared to the annual average lake level based on the calendar year,it is better to use the annual average lake level based on the hydrological year to determine the interannual lake level changes.As the lake level was stable in May,it is appropriate to compare May lake levels when examining interannual lake level changes with fewer data.Overall,remote sensing results agree well with the in-situ lake level observations;however,some significant deviations exist.In the comparable 2006−2009 period,the calendar-year average lake level observed insitu rose by 10−11 cm per year,which is lower than the ICESat result of 18 cm per year.
基金the Deutsche Forschungsgemeinschaft grant Schw 671/8-1
文摘We present a list of living and (sub) fossil Ostracoda (Crustacea) from Holocene sediments from Lake NamCo,Southern Tibet, including descriptions, distribution and ecological data of the important taxa from the Nam Cocatchment. Species associations from lake surface sediments, sediment cores and outcrop samples consist of eight speciesincluding Candona candida ( O.F. Müller, 1776 ) , Candona xizangensis ( Huang, 1982 ) , Eucypris afghanistanensis( Hartmann, 1964) , Fabaeformiscandona danielopoli ( Yin & Martens, 1997 ) , Ilyocypris cf. mongolica ( Martens, 1991 ) ,? Leucocythere dorsotuberosa ( Huang, 1982 ) , Leucocytherella sinensis ( Huang, 1982 ) and Limnocythere inopinata ( Baird,1843). The dominant species are ? L. dorsotuberosa and L. sinensis. They show morphological variations with different degreesof ornamentation. We regard the variable noding and rib formation as intraspecific variability possibly driven byenvironmental factors. In general,the number and degree of ribs increases with water depth in ? L. dorsotuberosa. Thus,theornamentation may present a means to reconstruct(paleo) water depths. Our list is intended to serve as a taxonomical andpaleoecological primer for future paleolimnological work.
基金supported by National Natural Science Foundation of China (41671067 and 41630754)State Key Laboratory of Cryosphere Science (SKLCS-ZZ-2015)
文摘This paper presents an assessment of the Soil and Water Assessment Tool(SWAT) on a glaciated(Qugaqie) and a non-glaciated(Niyaqu) subbasin of the Nam Co Lake. The Nam Co Lake is located in the southern Tibetan Plateau, two subbasins having catchment areas of 59 km^2 and 388 km^2, respectively. The scores of examined evaluation indices(i.e., R^2, NSE, and PBIAS) established that the performance of the SWAT model was better on the monthly scale compared to the daily scale. The respective monthly values of R^2, NSE, and PBIAS were 0.94, 0.97, and 0.50 for the calibration period while 0.92, 0.88, and -8.80 for the validation period. Glacier melt contribution in the study domain was simulated by using the SWAT model in conjunction with the Degree Day Melt(DDM) approach. The conjunction of DDM with the SWAT Model ensued improved results during both calibration(R^2=0.96, NSE=0.95, and PBIAS=-13.49) and validation (R^2=0.97, NSE=0.96, and PBIAS=-2.87) periods on the monthly time scale. Average contribution(in percentage) of water balance components to the total streamflow of Niyaqu and Qugaqie subbasins was evaluated. We found that the major portion(99.45%) of the streamflow in the Niyaqu subbasin was generated by snowmelt or rainfall surface runoff(SURF_Q), followed by groundwater(GW_Q, 0.47%), and lateral(LAT_Q, 0.06%) flows. Conversely, in the Qugaqie subbasin, major contributor to the streamflow(79.63%) was glacier melt(GLC_Q), followed by SURF_Q(20.14%), GW_Q(0.13%), and LAT_Q(0.089%). The contribution of GLC_Q was the highest(86.79%) in July and lowest(69.95%) in September. This study concludes that the performance of the SWAT model in glaciated catchment is weak without considering glacier component in modeling; however, it performs reasonably well in non-glaciated catchment. Furthermore, the temperature index approach with elevation bands is viable in those catchments where streamflows are driven by snowmelt. Therefore, it is recommended to use the SWAT Model in conjunction with DDM or energy base model to simulate the glacier melt contribution to the total streamflow. This study might be helpful in quantification and better management of water resources in data scarce glaciated regions.
基金supported by grants from the Ministry of Science and Technology(Grant Nos.2021FY100101,2019QZKK0901)the National Natural Science Foundation of China(Grant Nos.41941016,42230312,42020104007)China Geological Survey(Grant No.DD20221630).
文摘The Earth’s surface kinematics and deformation are fundamental to understanding crustal evolution.An effective research approach is to estimate regional motion field and deformation fields based on modern geodetic networks.If the discrete observed velocity field is obtained,the velocity related fields,such as dilatation rate and maximum shear strain rate,can be estimated by applying varied mathematical approaches.This study applied Akaike's Bayesian Information Criterion(ABIC)method to calculate strain rate fields constrained by GPS observations in the southeast Tibetan Plateau.Comparison with results derived from other three methods revealed that our ABIC-derived strain rate fields were more precise.The maximum shear strain rate highlighted the Xianshuihe–Xiaojiang fault system as the main boundary for the outward migration of material in southeastern Tibet,indicating rotation of eastern Tibet material around the eastern Himalaya rather than whole extrusion along a fixed channel.Additionally,distinct dilatation rate patterns in the northeast and southwest regions of the fault system were observed.The northeast region,represented by the Longmenshan area,exhibited negative dilatational anomalies;while the southwest region,represented by the Jinsha River area north of 29°N,displayed positive dilatational anomalies.This indicates compression in the former and extension in the latter.Combined with deep geophysical observations,we believe that the upper and lower crusts of the Jinsha River area north of 29°N are in an entire expanding state,probably caused by the escape-drag effect of material.The presence of a large,low-viscosity region south of 29°N may not enable the entire escape of the crust,but instead result in a differential escape of the lower crust faster than the upper crust.
文摘Based on the Tibet Autonomous Region's statistic yearbooks and the data fromthe two household surveys in 2002 and 2004, this paper has comprehensively analyzed the pattern ofchanges on the farmers and herdsmen's income sources in the Tibet Autonomous Region since 1990 withthe main findings as follows; (1) The change of income from the labor payment is the fastest; (2)There is no regular pattern of income variation for the household economic activities, the farmersand herdsmen's household incomegeneration projects are impacted by the elements like prices andreturns, and there is a lack of appropriate direction; (3) The income structure of labor paymentshows that the income from the farmers and herdsmen working outside grows fastest; (4) The incomefrom the farmers and herdsmen's labor payment correlate positively to their net income per capita;(5) From the perspective of the variation by region, labor payment income has changed fastest in thecounties of Rutok, Nyerong and Khangmar comparedthe data from the household survey in 2002 withthat of 2004.
文摘Through an in-depth analysis of the per capita net income of rural residents in Nyingchi City,it was known that the per capita net income of rural residents in Nyingchi City was increasing at high speed in recent 10 years. However,the wage income,household operating income,and agricultural income gap constitute the major factors influencing the gap of the per capita net income of rural residents in Nyingchi City. Finally,it came up with recommendations including promoting the reasonable flow of labor to the secondary and tertiary industries,increasing the wage income and transfer income of rural residents,accelerating the construction of small towns in rural areas,promoting the development of rural cooperatives,implementing the strategy of " benefiting farmers and strengthening tourism",promoting integration of agriculture and eco-tourism,promoting the development of modern agriculture,and expanding diversified production income of farmers.
基金supported by National Science Foundation of China(42102059 and 92055202)the China Geological Survey(DD20221817 and DD20190057)+1 种基金the basic scientific research funding in CAGS(J2204)the Second Tibetan Plateau Scientific Expedition and Research(2019QZKK0702).
文摘Two suites of mafic dykes,T1193-A and T1194-A,outcrop in Gyangze area,southeast Tibet.They are in the area of Comei LIP and have indistinguishable field occurrences with two other dykes in Gyangze,T0902 dyke with 137.7±1.3 Ma zircon age and T0907 dyke with 142±1.4 Ma zircon age reported by Wang YY et al.(2016),indicating coeval formation time.Taking all the four diabase dykes into consideration,two different types,OIB-type and weak enriched-type,can be summarized.The“OIB-type”samples,including T1193-A and T0907 dykes,show OIB-like geochemical features and have initial Sr-Nd isotopic values similar with most mafic products in Comei Large Igneous Provinces(LIP),suggesting that they represent melts directly generated from the Kerguelen mantle plume.The“weak enriched-type”samples,including T1194-A and T0902 dykes,have REEs and trace element patterns showing withinplate affinity but have obvious Nb-Ta-Ti negative anomalies.They show uniform lowerεNd(t)values(−6‒−2)and higher 87Sr/86Sr(t)values(0.706‒0.709)independent of their MgO variation,indicating one enriched mantle source.Considering their closely spatial and temporal relationship with the widespread Comei LIP magmatic products in Tethyan Himalaya,these“weak enriched-type”samples are consistent with mixing of melts from mantle plume and the above ancient Tethyan Himalaya subcontinental lithospheric mantle(SCLM)in different proportions.These weak enriched mafic rocks in Comei LIP form one special rock group and most likely suggest large scale hot mantle plume-continental lithosphere interaction.This process may lead to strong modification of the Tethyan Himalaya lithosphere in the Early Cretaceous.
基金supported by the program from Forestry and Grassland Department of Tibet Autonomous Region
文摘Background:The Black-necked Crane (Grus nigricollis)is an internationally threatened crane living on the plateau, mainly in winter, in the Yarlung Tsangpo River basin in Tibet,western China. In the past five years,some economic development projects have been conducted in this area,posing potential threats to the wintering populations of the cranes and their habitats. Therefore, the current population dynamics of wintering Black-necked Cranes and habitat suitability in the Yarlung Tsangpo River basin were investigated. Methods: Twenty counties were surveyed using the line transect method in December 2017 and January 2018, and we recorded the location,flock size,number of individuals,habitat types and presence of human disturbance in which they occurred.We compared the results from the middle wintering period in this survey with those from 2014. Results: The highest number of cranes recorded was 8291,and the results showed that the cranes were mainly distributed in Lhaze, Namling, Samzhubze, and Lhunzub.A total of 577 and 495 flocks were recorded in the early and middle wintering periods, respectively. In the early wintering period,there were signi ficant differences in the number of individuals across the di fferent habitats,with crop stubble land and plowed land representing more than 30% of the total habitat utilization.In the middle wintering period, there were also signi ficant differences in the number of individuals, and the utilization of crop stubble land represented over 60% of the total. Conclusions: Wintering Black-necked Cranes mainly fed on spilled grains in stubble habitat after harvest. In the middle wintering period, some of the farmlands were plowed and irrigated,which resulted in food shortages in these areas,and the cranes tended to gather in mixed flocks of large size instead of as a single family.There were still considerable regional wintering populations decreases in Quxu,Nedong,and Sakya in 2018 compared with 2014,and these decreases were mainly due to some recently emerging threats,including farmlands being converted into areas of greenhouse cultivation,highway and railway construction, river dredging,the rapid development of the manufacturing and mining industries,and the lack of protection of important wintering sites.
基金co-supported by the National Natural Science Foundation of China (Grant No. 42272267)the Research Grants of Chinese Academy of Geological Sciences (Grant No. JKYQN202309)+3 种基金the National Key Research and Development Project "Key scientific issues of transformative technology" (Grant No. 2019YFA0708604)the second Tibetan Plateau Scientific Expedition and Research Program (STEP) Grant (Grant Nos. 2019QZKK0802, 2019QZKK0901)the Scientific Investigation on Basic Resources of Ministry of Science and Technology (Grant No. 2021FY100101)the Geological Survey of China (Grant Nos. DD20221630, DD20242126)。
文摘Magmatic periodicity is recognized in continental arcs worldwide, but the mechanism responsible for punctuated arc magmatism is controversial. Continental arcs in the Trans-Himalayan orogenic system display episodic magmatism and the most voluminous flare-up in this system was in early Eocene during the transition from subduction to collision. The close association of the flare-up with collision is intriguing. Our study employs zircon Lu-Hf and bulk rock Sr-Nd isotopes, along with mineral geochemistry, to track the melt sources of the Nymo intrusive complex and the role of mantle magma during the early Eocene flare-up of the Gangdese arc, Tibet. The Nymo intrusive complex is composed of gabbronorite, diorite, quartz diorite, and granodiorite which define an arc-related calc-alkaline suite. Zircon U-Pb ages reveal that the complex was emplaced between ~50–47 Ma. Zircon Hf isotopes yield εHf(t) values of 8.2–13.1, while whole-rock Sr and Nd isotopes yield εNd(t) values of 2.7–6.5 indicative of magmatism dominated by melting of a juvenile mantle source with only minor crustal assimilation(~15%–25%) as indicated by assimilation and fractional crystallization modeling. Together with published data, the early Eocene magmatic flare-up was likely triggered by slab breakoff of subducted oceanic lithosphere at depths shallower than the overriding plate. The early Eocene magmatic flare-up may have contributed to crustal thickening of the Gangdese arc. This study provides important insights into the magmatic flare-up and its significant role in the generation of large batholiths during the transition from subduction to collision.
基金by the National Natural Science Foundation of China(Grant No.41402190 and 41602230)the Program of China Geological Survey(Grant No.121201010000150014 and DD20160026)Opening Foundation of Key Laboratory of Mineral Resources Evaluation in Northeast Asia,Ministry of Natural Resources(DBY-ZZ-18-06).
文摘Turbidites fromthe Shiquanhe–Namco OphioliteMélange Zone(SNMZ)record critical information about the tectonic affinity of the SNMZand the evolutionary history of theMeso-Tethys Ocean in Tibet.This paper reports sedimentologic,sandstone petrographic,zircon U-Pb geochronologic,and clastic rocks geochemical data of newly identified turbidites(Asa Formation)in the Asa Ophiolite Mélange.The youngest ages of detrital zircon from the turbiditic sandstone samples,together with~115 Ma U-Pb concordant age from the tuff intercalation within the Asa Formation indicate an Early Cretaceous age.The sandstone mineral modal composition data show that the main component is quartz grains and the minor components are sedimentary and volcanic fragments,suggesting that the turbidites were mainly derived froma recycled orogen provenancewith a minor addition of volcanic arc materials.The detrital U-Pb zircon ages of turbiditic sandstones yield main age populations of 170–120 Ma,300–220 Ma,600–500 Ma,1000–700 Ma,1900–1500 Ma,and~2500 Ma,similar to the ages of the Qiangtang Terrane(age peak of 600–500 Ma,1000–900 Ma,~1850 Ma and~2500 Ma)and the accretionary complex in the Bangong–Nujiang Ophiolite Zone(BNMZ)rather than the age of the Central Lhasa Terrane(age peak of~300 Ma,~550 Ma and~1150 Ma).The mineral modal compositions,detrital U-Pb zircon ages,and geochemical data of clastic rocks suggest that the Asa Formation is composed of sediments primarily recycled from the Jurassic accretionary complex within the BNMZ with the secondary addition of intermediate-felsic island arc materials from the South Qiangtang Terrane.Based on our new results and previous studies,we infer that the SNMZ represents a part of the Meso-Tethys Suture Zone,rather than a southward tectonic klippe of the BNMZ or an isolated ophiolitic mélange zone within the Lhasa Terrane.The Meso-Tethys Suture Zone records the continuous evolutionary history of the northward subduction,accretion,arc-Lhasa collision,and Lhasa-Qiangtang collision of the Meso-Tethys Ocean from the Early Jurassic to the Early Cretaceous.
文摘Geoelectrical investigations in Tibetan Plateau show that there are two high conductivity layers (HCLs) in the crust of southern Tibetan Plateau. The first HCL is at a depth of 15~20km, and the second at 45~60km. In the central region of the Plateau, such as north Qiangtang and Bayan Har, there is only one HCL in crust at the depth about 15~20km.The origin of HCL in upper crust of southern Tibet is mainly caused by free saline aqueous fluids. The seismic investigation by project INDEPTH in southern Tibet demonstrates that the bright spot reflection at about 15km depth is caused by 10% volume of free aqueous fluids (Makovsky and Klemperer, 1999). Seismic and heat flow research indicates the temperature in 15km depth of Tibet is from 400℃ to 650℃. The high concentration of Cl - in water of geothermal spring in southern Tibet means that the aqueous fluid in crust is saline water. The experiment on conductivity of NaCl solution shows that the conductivity is more than 4.5 S·m -1 under 400MPa and 300~650℃ condition (Quist and Marshall, 1968). This p\|T condition corresponds to the pressure and temperature range at 15~20km depth of Tibet.
文摘Widely distributed in Gyangzê-Chigu area, southern Tibet, NW- and nearly E-W-trending diabase(gabbro)-gabbro diorite dykes are regarded as the product of the large-scale spreading of the late Neo-Tethys Ocean. In order to constrain the emplacement age of these dykes, zircons of two samples from diabases in Nagarzê were dated by using the U-Pb SHRIMP method. Two nearly the same weighted mean ^206pb/^23SU ages were obtained in this paper, which are 134.9±1.8 Ma (MSWD=0.65) and 135.5 ± 2.1 Ma (MSWD=1.40), respectively. They not only represent the crystallization age of the diabase, but also documented an important spreading event of the Neo-Tethys Ocean during the late Jurassic and early Cretaceous. This dating result is of great significance to reconstruct the temporal framework of the late Neo-Tethys Ocean in the Qinghai-Tibet Plateau.
文摘March 28 of this year is the second Tibetan Serfs Emancipation Day. People of all nationalities in Tibet marked the day by hoisting the national flag and by singing and dancing. Smiles were on every face and a festive atmosphere pervaded the snowcovered plateau region.
基金supported by the Strategic Project of Science and Technology of Chinese Academy of Sciences (XDB050105003)the State Scholarship Fund of China (41272030)+1 种基金the National Basic Research Program of China (2012CB822001)IGCP608
文摘This is a new report on the early Eocene radiolarian fauna from the Sangdanlin section in the Gyirong region, along the southern margin of the Yarlung Zangbo Suture Zone. The Sangdanlin section measured in this study is divided into three lithostratigraphic units from bottom to top: the Zongzhuo, Sangdanlin, and Zheya formations. Abundant radiolarian fossils were obtained from the Sangdanlin section and 54 species of 30 genera were identified and assigned as follows: Cryptamphorella conara-C. macropora the late Cretaceous Zone and Amphis_phaera coronate, Bur)ella tetradica-Bekoma campechensis, and B.bidartensis-B. divaricata the Paleocene-early Eocene Interval Zones. The Paleocene- early Eocene radiolarian zones are comparable to the radiolarian zones RP4-RP8 in New Zealand. Based on the data of radiolaria and lithofacies, it is suggested that the Zongzhuo Formation should be deposited along the base of the north-facing, continental slope of the Greater Indian continental margin, and the Sangdanlin Formation should be a deep marine, sedimentary sequence located in a foreland basin. The early Eocene radiolarian fauna in the Sangdanlin Formation constrains the initial age of the India-Asia collision to no later than 53.6 Ma.
基金This work is supported by the National Key Basic Research Program (2006CB701406);Natural Science Foundation of China for Youth (40403003) ;Key Project of the Natural Science Foundation of China (40332020), and is a contribution to IGCP 463.
文摘One of the new directions in the field of Cretaceous research is to elucidate the mechanism of the sedimentary transition from the Cretaceous black shales to oceanic red beds. A chemical sequential extraction method was applied to these two types of rocks from southern Tibet to investigate the burial records of reactive iron. Results indicate that carbonate-associated iron and pyrite are relatively enriched in the black shales, but depleted or absent in red beds. The main feature of the reactive iron in the red beds is relative enrichment of iron oxides (largely hematite), which occurred during syn-depostion or early diagenesis. The ratio between iron oxides and the total iron indicates an oxygen-enriched environment for red bed deposition. A comparison between the reactive iron burial records and proxies of paleo-productivity suggests that paleo-productivity decreases when the ratio between iron oxides and the total iron increases in the red beds. This phenomenon could imply that the relationship between marine redox and productivity might be one of the reasons for the sedimentary transition from Cretaceous black shale to oceanic red bed deposition.
基金This research was supported by the National Key Project for Basic Research on the Tibetan Plateau (Grant G1998040800-3);National Natural Science Foundation of China (Grants 49972026 and 39972026);Chinese Academy of Sciences (CAS) Projects (Grant KZ952-JI408) ; US-NSF project (Grant 980612).
文摘A systematic sedimentological and chronological study of typical Paleogene basins in eastcentral Tibet suggests that the depositional characteristics of extensively developed huge-bedded, purplish-red coarse clastic rocks formed in a tectonic setting of regional thrusting and strike-slipping represent a typical dry and hot subaerial alluvial fan environment formed in a proximal and rapidaccumulating sediment body in debris flows and a fan-surface braided river. Combining results from basin-fill sequences, sequences of coarse clastic rocks, fauna and sporo-pollen associations and thermochronological data, it is conduded that the coarse clastic rocks formed in the period of 54.2- 24.1 Ma, nearly coeval with the formation of Paleogene basins in the northern (Nangqen-Yushu thrust belt), middle (Batang-Lijiang fault belt), and disintegration of large basins in the southern (LanpingSimao fold belt) segments of Tibet. The widespread massive-bedded coarse clastic rocks, fold thrusting and strike-slip, thrust shortening, and igneous activities in the Paleogene basins of eastcentral Tibet indicate that an early diachronous tectonic uplift might have occurred in the Tibetan Plateau from Middle Eocene to Oligocene, related to the initial stage of collision of the Indian and Asian plates.