Information-Centric Networking (ICN) treat contents as the first class citizens and adopt content names for routing. However, ICN faces challenges of big data. The massive content names and location-independent naming...Information-Centric Networking (ICN) treat contents as the first class citizens and adopt content names for routing. However, ICN faces challenges of big data. The massive content names and location-independent naming bring scalability and efficiency challenges for content addressing. A scalable and efficient name-based routing scheme is a critical component for ICN. This paper proposes a novel Scalable Name-based Geometric Routing scheme, SNGR. To resolve the location-independent names to locations, SNGR utilizes a bi-level sloppy grouping design. To provide scalable location-dependent routing for name resolution, SNGR proposess a universal geometric routing framework. Our theoretical analyses guarantee the performance of SNGR. The experiments by simulation show that SNGR outperformances other similar routing schemes in terms of the scalability of routing table, the reliability to failures, as well as path stretch and latency in name resolution.展开更多
Information-Centric Networking (ICN) is an innovative paradigm for the future internet architecture, which addresses IP network limitations in supporting content distribution and information access by decoupling conte...Information-Centric Networking (ICN) is an innovative paradigm for the future internet architecture, which addresses IP network limitations in supporting content distribution and information access by decoupling content from hosts and providing the ability to retrieve a content object by its name (identifier), rather than its storage location (IP address). Name resolution and routing is critical for content retrieval in ICN networks. In this research, we perform a comparative study of two widely used classes of ICN name resolution and routing schemes, namely flooding and Distributed Hash Table (DHT). We consider the flooding-based routing in Content-Centric Networks due to its wide acceptance. For the DHT scheme, we design a multi-level DHT that takes into account the underlying network topology and uses name aggregation to further reduce control overhead and improve network efficiency. Then, we compare the characteristics and performance of these two classes of name resolution and routing through extensive simulations. The evaluation results show that the performances of these two approaches are reliant on several factors, including network size, content location dynamics, and content popularity. Our study reveals insights into the design tradeoffs and offers guidelines for design strategies.展开更多
基金This research is supported in part by the National High-Tech Development 863 Program of China under Grant No. 2012AA012506, the National Science and Technology Pillar Program of China under Grant No. 2012BAH37B00, and the National Natural Science Foundation of China under Grant No. 61202457.
文摘Information-Centric Networking (ICN) treat contents as the first class citizens and adopt content names for routing. However, ICN faces challenges of big data. The massive content names and location-independent naming bring scalability and efficiency challenges for content addressing. A scalable and efficient name-based routing scheme is a critical component for ICN. This paper proposes a novel Scalable Name-based Geometric Routing scheme, SNGR. To resolve the location-independent names to locations, SNGR utilizes a bi-level sloppy grouping design. To provide scalable location-dependent routing for name resolution, SNGR proposess a universal geometric routing framework. Our theoretical analyses guarantee the performance of SNGR. The experiments by simulation show that SNGR outperformances other similar routing schemes in terms of the scalability of routing table, the reliability to failures, as well as path stretch and latency in name resolution.
文摘Information-Centric Networking (ICN) is an innovative paradigm for the future internet architecture, which addresses IP network limitations in supporting content distribution and information access by decoupling content from hosts and providing the ability to retrieve a content object by its name (identifier), rather than its storage location (IP address). Name resolution and routing is critical for content retrieval in ICN networks. In this research, we perform a comparative study of two widely used classes of ICN name resolution and routing schemes, namely flooding and Distributed Hash Table (DHT). We consider the flooding-based routing in Content-Centric Networks due to its wide acceptance. For the DHT scheme, we design a multi-level DHT that takes into account the underlying network topology and uses name aggregation to further reduce control overhead and improve network efficiency. Then, we compare the characteristics and performance of these two classes of name resolution and routing through extensive simulations. The evaluation results show that the performances of these two approaches are reliant on several factors, including network size, content location dynamics, and content popularity. Our study reveals insights into the design tradeoffs and offers guidelines for design strategies.