We propose a three-step technique to achieve this purpose. First, we utilize a collection of XML namespaces organized into hierarchical structure as a medium for expressing data semantics. Second, we define the format...We propose a three-step technique to achieve this purpose. First, we utilize a collection of XML namespaces organized into hierarchical structure as a medium for expressing data semantics. Second, we define the format of resource descriptor for the information source discovery scheme so that we can dynamically register and/or deregister the Web data sources on the fly. Third, we employ an inverted-index mechanism to identify the subset of information sources that are relevant to a particular user query. We describe the design, architecture, and implementation of our approach—IWDS, and illustrate its use through case examples. Key words integration - heterogeneity - Web data source - XML namespace CLC number TP 311.13 Foundation item: Supported by the National Key Technologies R&D Program of China(2002BA103A04)Biography: WU Wei (1975-), male, Ph.D candidate, research direction: information integration, distribute computing展开更多
Querying over XML elements using keyword search is steadily gaining popularity. The traditional similarity measure is widely employed in order to effectively retrieve various XML documents. A number of authors have al...Querying over XML elements using keyword search is steadily gaining popularity. The traditional similarity measure is widely employed in order to effectively retrieve various XML documents. A number of authors have already proposed different similarity-measure methods that take advantage of the structure and content of XML documents. However, they do not consider the similarity between latent semantic information of element texts and that of keywords in a query. Although many algorithms on XML element search are available, some of them have the high computational complexity due to searching for a huge number of elements. In this paper, we propose a new algorithm that makes use of the se-mantic similarity between elements instead of between entire XML documents, considering not only the structure and content of an XML document, but also semantic information of namespaces in elements. We compare our algorithm with the three other algorithms by testing on real datasets. The experiments have demonstrated that our proposed method is able to improve the query accuracy, as well as to reduce the running time.展开更多
文摘We propose a three-step technique to achieve this purpose. First, we utilize a collection of XML namespaces organized into hierarchical structure as a medium for expressing data semantics. Second, we define the format of resource descriptor for the information source discovery scheme so that we can dynamically register and/or deregister the Web data sources on the fly. Third, we employ an inverted-index mechanism to identify the subset of information sources that are relevant to a particular user query. We describe the design, architecture, and implementation of our approach—IWDS, and illustrate its use through case examples. Key words integration - heterogeneity - Web data source - XML namespace CLC number TP 311.13 Foundation item: Supported by the National Key Technologies R&D Program of China(2002BA103A04)Biography: WU Wei (1975-), male, Ph.D candidate, research direction: information integration, distribute computing
文摘Querying over XML elements using keyword search is steadily gaining popularity. The traditional similarity measure is widely employed in order to effectively retrieve various XML documents. A number of authors have already proposed different similarity-measure methods that take advantage of the structure and content of XML documents. However, they do not consider the similarity between latent semantic information of element texts and that of keywords in a query. Although many algorithms on XML element search are available, some of them have the high computational complexity due to searching for a huge number of elements. In this paper, we propose a new algorithm that makes use of the se-mantic similarity between elements instead of between entire XML documents, considering not only the structure and content of an XML document, but also semantic information of namespaces in elements. We compare our algorithm with the three other algorithms by testing on real datasets. The experiments have demonstrated that our proposed method is able to improve the query accuracy, as well as to reduce the running time.