期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Impact of different nano additives on performance, combustion, emissions and exergetic analysis of a diesel engine using waste cooking oil biodiesel
1
作者 M.S.Gad Mostafa M.Abdel Aziz Hatem Kayed 《Propulsion and Power Research》 SCIE 2022年第2期209-223,共15页
Biodiesel is derived from waste cooking oil (WCO) by transesterification. Methylester was prepared by mixing diesel and biodiesel oils as 20% by volume. Nano particles asTiO2, Al2O3 and CNTs were blended with biodiese... Biodiesel is derived from waste cooking oil (WCO) by transesterification. Methylester was prepared by mixing diesel and biodiesel oils as 20% by volume. Nano particles asTiO2, Al2O3 and CNTs were blended with biodiesel blend at different concentrations of 25,50, and 100 mg/l to enhance the physicochemical fuel characteristics to obtain clean and effi-cient combustion performance. An experimental setup was incorporated into a diesel engine toinvestigate the influence of these nano-materials on engine performance, exergy analysis, combustion characteristics and emissions using WCO biodiesel-diesel mixture. Enriching methylester mixture with 100 ppm titanium, alumina and CNTs (B20T100, B20A100 andB20C100) increased the thermal efficiency by 4%, 6% and 11.5%, respectively compared toB20. Biodiesel blending with nano additives B20T100, B20A100 and B20C100 decreasedthe emissions of CO (11%, 24% and 30%, respectively), HC (8%, 17% and 25%, respectively)and smoke (10%, 13% and 19%, respectively) compared to B20. However, the noticeable increase of NOx was estimated by 5%, 12% and 27% for B20T100, B20A100 and B20C100,respectively. Finally, the results showed the rise in peak cylinder pressure by 5%, 9% and 11% and increase in heat release rate by 4%, 8% and 13% for B20T100, B20A100 andB20C100, respectively. The fuel exergy of B20T100, B20A100 and B20C100 are lower thanbiodiesel blend B20 by 6.5%, 16% and 23% but the exergetic efficiency are increased by 7%,19% and 30% at full load about B20. 展开更多
关键词 Waste cooking oil(WCO) nano additives Engine performance EXERGY Combustion characteristics EMISSIONS
原文传递
The Effect and Mechanism of Nano-Cu Lubricating Additives on the Electroless Deposited Ni-W-P Coating
2
作者 陈敏 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第5期815-820,共6页
The coating and deposition process with excellent anti wear and suitable for industrial application were developed, and the optimum bath composition and process were obtained by studying the influence of the bath comp... The coating and deposition process with excellent anti wear and suitable for industrial application were developed, and the optimum bath composition and process were obtained by studying the influence of the bath composition, temperature and pH value on the deposition rate and the plating solution stability. Moreover, the tribological properties of nano-Cu lubricating additives and electroless deposited Ni-W-P coating as well as their synergistic effect are researched using ring-block abrasion testing machine and energy dispersive spectrometer. Research results show that Ni-W-P alloy coating and nano-Cu lubricating additive have excellent synergistic effect, e g, the wear resistance of Ni-W-P alloy coating (with heat treatment and the oil with nano-Cu additives) has increased hundreds times than 45 steel as the metal substrate with the basic oil, and zero wear is achieved, which breaks through the bottleneck of previous separate research of the above-mentioned two aspects. 展开更多
关键词 Ni-W-P alloy coating nano Cu lubricating additives friction-Wear mechanism synergistic effect
下载PDF
Corrosion Protection of CNTs/CNFs Modified Cement Mortars
3
作者 Christina V. Panagiotakopoulou Panagiotis Papandreopoulos George Batis 《Journal of Materials Science and Chemical Engineering》 CAS 2022年第8期1-17,共17页
The aim of this study is to examine the performance of nano additives in two different sets of mortar specimens armed with reinforcing steel rebars. In particular, three sets of reinforced concrete cylinders with addi... The aim of this study is to examine the performance of nano additives in two different sets of mortar specimens armed with reinforcing steel rebars. In particular, three sets of reinforced concrete cylinders with additives of 0.1% wt of carbon nanotubes (CNTs) and carbon nanofibers (CNFs) have been exposed to a solution of 3.5% NaCl, and further examined for the impact of nano-modification on corrosion performance. The anti-corrosive performance of these additives was investigated through linear polarization technique (LPR), mass loss and mercury porosimetry technique (MIP). From the investigation results, it is found that the addition of CNTs/CNFs causes lower steel corrosion, whereas the pore structure of concrete with CNTs/CNFs can significantly reduce the mass loss rate and the relative permeability. 展开更多
关键词 nano additives CNTs/CNFs Cement Mortars Corrosion Resistance Electrochemical Measurements POROSIMETRY
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部