Eco-friendly and biodegradable novel hydrogel were prepared by blending and solution casting method. The designed hydrogel is based on chitosan/ PEG600/Gurgam with carbon nanofiller along silane crosslinked (TEOS) wit...Eco-friendly and biodegradable novel hydrogel were prepared by blending and solution casting method. The designed hydrogel is based on chitosan/ PEG600/Gurgam with carbon nanofiller along silane crosslinked (TEOS) with pH sensitive response to controlled release of drug in biomedical materials and agriculture industry. The various concentration of carbon nanofiller is used to analyze its effect on the fabricated hydrogel characteristics by using FTIR, SEM, TGA, swelling studies (water, buffer and ionic solution). Spectra of FTIR reflected both established and newly developed groups (like hydrogel). COOH group presence is clearly observed in this range in the carbon filler reinforced hydrogel. The SEM micrographs show that CPG0.003 had a collection of polysaccharide chains as thin helices, which is attributed to the increase in the size of porosity. TGA shows to increase concentration of nanofiller enhanced the thermal stability of the designed hydrogels at temperature 25˚C to 550˚C mass loss percentage decrease upto 20% and increase thermal stability. This pH response made these resultant hydrogels as fruitful competitor against the many reported controlled release application.展开更多
文摘Eco-friendly and biodegradable novel hydrogel were prepared by blending and solution casting method. The designed hydrogel is based on chitosan/ PEG600/Gurgam with carbon nanofiller along silane crosslinked (TEOS) with pH sensitive response to controlled release of drug in biomedical materials and agriculture industry. The various concentration of carbon nanofiller is used to analyze its effect on the fabricated hydrogel characteristics by using FTIR, SEM, TGA, swelling studies (water, buffer and ionic solution). Spectra of FTIR reflected both established and newly developed groups (like hydrogel). COOH group presence is clearly observed in this range in the carbon filler reinforced hydrogel. The SEM micrographs show that CPG0.003 had a collection of polysaccharide chains as thin helices, which is attributed to the increase in the size of porosity. TGA shows to increase concentration of nanofiller enhanced the thermal stability of the designed hydrogels at temperature 25˚C to 550˚C mass loss percentage decrease upto 20% and increase thermal stability. This pH response made these resultant hydrogels as fruitful competitor against the many reported controlled release application.