Multidimensional integration and multifunctional com-ponent assembly have been greatly explored in recent years to extend Moore’s Law of modern microelectronics.However,this inevitably exac-erbates the inhomogeneity ...Multidimensional integration and multifunctional com-ponent assembly have been greatly explored in recent years to extend Moore’s Law of modern microelectronics.However,this inevitably exac-erbates the inhomogeneity of temperature distribution in microsystems,making precise temperature control for electronic components extremely challenging.Herein,we report an on-chip micro temperature controller including a pair of thermoelectric legs with a total area of 50×50μm^(2),which are fabricated from dense and flat freestanding Bi2Te3-based ther-moelectric nano films deposited on a newly developed nano graphene oxide membrane substrate.Its tunable equivalent thermal resistance is controlled by electrical currents to achieve energy-efficient temperature control for low-power electronics.A large cooling temperature difference of 44.5 K at 380 K is achieved with a power consumption of only 445μW,resulting in an ultrahigh temperature control capability over 100 K mW^(-1).Moreover,an ultra-fast cooling rate exceeding 2000 K s^(-1) and excellent reliability of up to 1 million cycles are observed.Our proposed on-chip temperature controller is expected to enable further miniaturization and multifunctional integration on a single chip for microelectronics.展开更多
The development of precise and sensitive electrophysiological recording platforms holds the utmost importance for research in the fields of cardiology and neuroscience.In recent years,active micro/nano-bioelectronic d...The development of precise and sensitive electrophysiological recording platforms holds the utmost importance for research in the fields of cardiology and neuroscience.In recent years,active micro/nano-bioelectronic devices have undergone significant advancements,thereby facilitating the study of electrophysiology.The distinctive configuration and exceptional functionality of these active micro-nano-collaborative bioelectronic devices offer the potential for the recording of high-fidelity action potential signals on a large scale.In this paper,we review three-dimensional active nano-transistors and planar active micro-transistors in terms of their applications in electroexcitable cells,focusing on the evaluation of the effects of active micro/nano-bioelectronic devices on electrophysiological signals.Looking forward to the possibilities,challenges,and wide prospects of active micro-nano-devices,we expect to advance their progress to satisfy the demands of theoretical investigations and medical implementations within the domains of cardiology and neuroscience research.展开更多
The arc ignition system based on charring polymers has advantages of simple structure,low ignition power consumption and multiple ignitions,which bringing it broadly application prospect in hybrid propulsion system of...The arc ignition system based on charring polymers has advantages of simple structure,low ignition power consumption and multiple ignitions,which bringing it broadly application prospect in hybrid propulsion system of micro/nano satellite.However,charring polymers alone need a relatively high input voltage to achieve pyrolysis and ignition,which increases the burden and cost of the power system of micro/nano satellite in practical application.Adding conductive substance into charring polymers can effectively decrease the conducting voltage which can realize low voltage and low power consumption repeated ignition of arc ignition system.In this paper,a charring conductive polymer ignition grain with a cavity geometry in precombustion chamber,which is composed of PLA and multiwall carbon nanotubes(MWCNT)was proposed.The detailed ignition processes were analyzed and two different ignition mechanisms in the cavity of charring conductive polymers were revealed.The ignition characteristics of charring conductive polymers were also investigated at different input voltages,ignition grain structures,ignition locations and injection schemes in a visual ignition combustor.The results demonstrated that the ignition delay and external energy required for ignition were inversely correlated with the voltages applied to ignition grain.Moreover,the incremental depth of cavity shortened the ignition delay and external energy required for ignition while accelerated the propagation of flame.As the depth of cavity increased from 2 to 6 mm(at 50 V),the time of flame propagating out of ignition grain changed from 235.6 to 108 ms,and values of mean ignition delay time and mean external energy required for ignition decreased from 462.8 to 320 ms and 16.2 to 10.75 J,respectively.The rear side of the cavity was the ideal ignition position which had a shorter ignition delay and a faster flame propagation speed in comparison to other ignition positions.Compared to direct injection scheme,swirling injection provided a more favorable flow field environment in the cavity,which was beneficial to ignition and initial flame propagation,but the ignition position needed to be away from the outlet of swirling injector.At last,the repeated ignition characteristic of charring conductive polymers was also investigated.The ignition delay time and external energy required for ignition decreased with repeated ignition times but the variation was decreasing gradually.展开更多
Micro- and nano-plastics (MNPs) are tiny plastic particles resulting from plastic product degradation. Soil MNPs have been identified as potential influential factors affecting various soil properties and crop biomass...Micro- and nano-plastics (MNPs) are tiny plastic particles resulting from plastic product degradation. Soil MNPs have been identified as potential influential factors affecting various soil properties and crop biomass productivity. This mini-review provides a synthesis of recent findings concerning their effects on soil physicochemical properties, microorganisms, organic carbon content, soil nutrients, greenhouse gas emissions, soil fauna, and their impacts on plant ecophysiology, growth, and production. The results indicate that MNPs may markedly impede soil aggregation ability, increase porosity, decrease soil bulk density, enhance water retention capacity, influence soil pH and electrical conductivity, and escalate soil water evaporation. Exposure to MNPs may predominantly induce changes in soil microbial composition, reducing the diversity and complexity of microbial communities and microbial activity while enhancing soil organic carbon stability, influencing soil nutrient dynamics, and stimulating organic carbon decomposition and denitrification processes, leading to elevated soil respiration and methane emissions, and potentially decreasing soil nitrous oxide emission. Additionally, MNPs may adversely affect soil fauna, diminish seed germination rates, promote plant root growth, yet impair plant photosynthetic efficacy and biomass productivity. These findings contribute to a better understanding of the impacts and mechanistic foundations of MNPs. Future research avenues are suggested to further explore the impacts and economic implications.展开更多
Nano-particles which can largely improve the microstructure and oxidation resistance of materials are often used as a strengthening component in metal matrix composites. However, few studies were reported on its appli...Nano-particles which can largely improve the microstructure and oxidation resistance of materials are often used as a strengthening component in metal matrix composites. However, few studies were reported on its application in the bond coat of duplex structure thermal barrier coating(TBC). Three kinds of NiCoCrAlY coatings strengthened by different nano-particles with the same addition (1%, mass fraction) were prepared by the laser cladding technique on Ni-based superalloy substrates, aiming to study the effects of the nano-particles on microstructure and oxidation resistance of NiCoCrAlY coatings (the bond coat of the duplex structure thermal barrier coatings). Scanning electron microscope (SEM), X-ray diffractometer(XRD) and thermogravimetry were employed to investigate their morphologies, phases and cyclic oxidation behaviors in atmosphere at 1 050℃, compared with the coating without nano-particles. With the addition of nano-particles, the growth pattern of the grains at the interface changed from epitaxial growth to non-epitaxial growth or part-epitaxial growth; slender dendrites were broken and cellularized; cracks and pores were restrained; and the oxidation weight-gain and the stripping resistance of the oxide scale were improved as well. Among the three kinds of nano-particles, the SiC nano-particles showed the most improvement on microstructure, while the CeO2 nano-particles were insufficient, but its effects on the oxidation resistance are the same as those of the SiC nano-particles. Based on the discussions of the influence mechanism, it is believed that CeO2 nano-particles would show better improvement than SiC nano-particles if the proper amount is added and the proper preparation technique of micro-nanometer composite powders is adopted, with the synergistic action of nanometer effect and reactive element effect.展开更多
The tribological properties of Sialon sliding against AISI52100 steel ball under the lubrication of solid particle additives, as micro-borate particle and nano-PbS particle, were evaluated by a SRV ball-on-disc test r...The tribological properties of Sialon sliding against AISI52100 steel ball under the lubrication of solid particle additives, as micro-borate particle and nano-PbS particle, were evaluated by a SRV ball-on-disc test rig. The chemical composition of the worn surface was characterized by X-ray photoelectron spectroscopy (XPS). The morphologies of the worn surfaces of Sialon were analyzed by scanning electron microscopy (SEM). The results show that the particles can reduce the friction coefficient of the pairs and the wear volume of Sialon significantly. The wear resistance of micro-borate is superior to that of nano-PbS while the friction-reducing ability of PbS is better than that of borate. According to the XPS and SEM results, the wear resistance of PbS is mainly depended on the tribochemical film mainly composed of PbSO 4, which deposited on the worn surface with good bonding strength. No tribochemical reaction or deposited film was detected or observed on the worn surface of Sialon under the lubrication of borate, indicating that the possible physically deposited film generated from micro particle can also greatly reduce the wear volume of Sialon, though the friction reducing ability of which is inferior to that of nano PbS particle.展开更多
La0.8Ba0.2MnO3 nano-particles were synthesized by sol-gel process, and the crystal structure and morphology were characterized by XRD and SEM, respectively. The complex permittivity and permeability were determined by...La0.8Ba0.2MnO3 nano-particles were synthesized by sol-gel process, and the crystal structure and morphology were characterized by XRD and SEM, respectively. The complex permittivity and permeability were determined by microwave vector network analyzer in the frequency range of 2-18 GHz. The relationship between reflection coefficient and microwave frequency of La0.8Ba0.2 MnO3 was calculated based on measured data. The results show that the average diameter of La0.8Ba0.2MnO3 crystal powders is about 80 nm and the crystal structure is perovskite when being calcined at 800 ℃ for 2 h. The microwave absorbing peak is 13 dB at 6.7 GHz and the effective absorbing bandwidth above 10 dB reaches 1.8 GHz for the sample with the thickness of 2.6 mm. The microwave absorption can be attributed to both the dielectric loss and the magnetic loss from the loss tangents of the sample, but the former is greater than the latter.展开更多
The surface of Titanium Hydride (TiH 2) is coated by Nano Titanium Dioxide (TiO 2) particles prepared in both of methods of hydrolysis reaction of Ti(OC 4H 9) 4 and base precipitation reaction of Ti(SO 4) 2. ...The surface of Titanium Hydride (TiH 2) is coated by Nano Titanium Dioxide (TiO 2) particles prepared in both of methods of hydrolysis reaction of Ti(OC 4H 9) 4 and base precipitation reaction of Ti(SO 4) 2. TiH 2 coated with nano TiO 2 particles, in which there is an oxidation film on its surface, shown in the experiments, will obviously achieve good effects on releasing hydrogen slowly in high temperature. There are different structures and properties of TiH 2 coated by nano TiO 2 particles prepared in different ways in high temperature, which can influence on releasing hydrogen.展开更多
The paper presents the results of studies surface microrelief, frequency-temperature characteristics of the imaginary part of the dielectric permittivity and dielectric loss of PE+TlInSe2 composite materials in 25。C ...The paper presents the results of studies surface microrelief, frequency-temperature characteristics of the imaginary part of the dielectric permittivity and dielectric loss of PE+TlInSe2 composite materials in 25。C - 150。C temperature and 25 Hz - 1 MHz frequency range before and after application of the aluminum nano-particles with a size of 50 nm. The change in the amount of semicon-ductor filler TlInSe2 and aluminum nano-particles changes the state of the surface and the frequency-temperature characteristics of composite materials PE+xvol.%TlInSe2, which allows to obtain composites with the desired dielectric permittivity and dielectric loss.展开更多
SnO2 nano particles with various Pd-doping concentrations were prepared using a template-free hydrothermal method.The effects of Pd doping on the crystal structure,morphology,microstructure,thermal stability and surfa...SnO2 nano particles with various Pd-doping concentrations were prepared using a template-free hydrothermal method.The effects of Pd doping on the crystal structure,morphology,microstructure,thermal stability and surface chemistry of these nano particles were characterized by transmission electron microscope,X-ray diffractometer and X-ray photoelectron spectroscope respectively.It was observed that Pd-doping had little effect on the grain sizes of the obtained SnO2 nano particles during the hydrothermal route.During thermal annealing,Pd-doping could restrain the growth of grain sizes below 500℃ while the grain growth was promoted when the temperature increased to above 700℃.XPS results revealed that Pd existed in three chemical states in the as-synthesized sample as Pd^0,Pd^2+ and Pd^4+,respectively.Pd^4+ was the main state which was responsible for improving the gas-sensing property.The optimal Pd-doping concentration for better gas-sensing property and thermal stability was 2.0%-2.5% (mole fraction).展开更多
Coating technologies are a commonly used way to protect metals against corrosion.However,with more and more severe service environments of materials,many protective coating systems often are not environmentally friend...Coating technologies are a commonly used way to protect metals against corrosion.However,with more and more severe service environments of materials,many protective coating systems often are not environmentally friendly or toxic as in the case of chromates.Based on the world’s abundant ideal magnesium(Mg)and its alloy,the smart self-healing anticorrosive coating can autonomously restore the damaged part of the coating according to the environmental changes,strengthen the corrosion protection ability,and prolong its service life.This paper reviews the research progress of smart self-healing coatings on Mg alloys.These coatings mostly contain suitable corrosion inhibitors encapsulated into micro/nano containers.Moreover,the different self-healing mechanisms and functionalities of micro/nano containers are discussed.The micro/nano containers range from inorganic nanocontainers such as mesoporous nanoparticles(silica(SiO_(2)),titanium dioxide(TiO_(2)),etc.),over inorganic clays(halloysite,hydrotalcite-like,zeolite),to organic nanocontainers such as polymer microcapsules,nanofibers,chitosan(CS)and cyclodextrin(CD),as well as,carbon materials such as graphene and carbon nanotubes and hybrids such as metal organic frameworks.The functioning of micro/nano containers can be divided in two principal groups:autonomous(based on defect filling and corrosion inhibition)and non-autonomous(based on dynamic bonds and shape memory polymers).Moreover,multi functionalities and composite applications of various micro/nano containers are summarized.At present,significant progress has been made in the preparation methods and technologies of micro/nano containers.Achieving long-term self-healing properties of coatings sensing of coating failure and early warning after self-healing function failure can be expected as the main development direction of self-healing corrosion protection coatings in the future.展开更多
Interfacial solar evaporation holds great promise to address the freshwater shortage.However,most interfacial solar evaporators are always filled with water throughout the evaporation process,thus bringing unavoidable...Interfacial solar evaporation holds great promise to address the freshwater shortage.However,most interfacial solar evaporators are always filled with water throughout the evaporation process,thus bringing unavoidable heat loss.Herein,we propose a novel interfacial evaporation structure based on the micro–nano water film,which demonstrates significantly improved evaporation performance,as experimentally verified by polypyrrole-and polydopamine-coated polydimethylsiloxane sponge.The 2D evaporator based on the as-prepared sponge realizes an enhanced evaporation rate of 2.18 kg m^(−2)h^(−1)under 1 sun by fine-tuning the interfacial micro–nano water film.Then,a homemade device with an enhanced condensation function is engineered for outdoor clean water production.Throughout a continuous test for 40 days,this device demonstrates a high water production rate(WPR)of 15.9–19.4 kg kW^(−1)h^(−1)m^(−2).Based on the outdoor outcomes,we further establish a multi-objective model to assess the global WPR.It is predicted that a 1 m^(2)device can produce at most 7.8 kg of clean water per day,which could meet the daily drinking water needs of 3 people.Finally,this technology could greatly alleviate the current water and energy crisis through further large-scale applications.展开更多
Sn_(1−x)Er_(x)O_(2)(x=0%,8%,16%,24%)micro/nanofibers were prepared by electrospinning combined with heat treatment using erbium nitrate,stannous chloride and polyvinylpyrrolidone(PVP)as raw materials.The target produc...Sn_(1−x)Er_(x)O_(2)(x=0%,8%,16%,24%)micro/nanofibers were prepared by electrospinning combined with heat treatment using erbium nitrate,stannous chloride and polyvinylpyrrolidone(PVP)as raw materials.The target products were characterized by thermogravimetric analyzer,X-ray diffrotometer,fourier transform infrared spectrometer,scanning electron microscope,spectrophotometer and infrared emissivity tester,and the effects of Er^(3+)doping on its infrared and laser emissivity were studied.At the same time,the Sn_(1−x)Er_(x)O_(2)(x=0%,16%)doping models were constructed based on the first principles of density functional theory,and the related optoelectronic properties such as their energy band structure,density of states,reflectivity and dielectric constant were analyzed,and further explained the mechanism of Er^(3+)doping on SnO_(2)infrared emissivity and laser absorption from the point of electronic structure.The results showed that after calcination at 600℃,single rutile type SnO_(2)was formed,and the crystal structure was not changed by doping Er^(3+).The calcined products showed good fiber morphology,and the average fiber diameter was 402 nm.The infrared emissivity and resistivity of the samples both decreased first and then increased with the increase of Er^(3+)doping amount.When x=16%,the infrared emis-sivity of the sample was at least 0.71;and Er^(3+)doping can effectively reduce the reflectivity of SnO_(2)at 1.06μm and 1.55μm,when x=16%,its reflectivity at 1.06μm and 1.55μm are 50.5%and 40%,respectively,when x=24%,the reflectivity at 1.06μm and 1.55μm wavelengths are 47.3%and 42.1%,respectively.At the same time,the change of carrier concentration and electron transition before and after Er^(3+)doping were described by first-principle calculation,and the regulation mechanism of infrared emissivity and laser reflectivity was explained.This study provides a certain experimental and theoretical basis for the development of a single-type,light-weight and easily prepared infrared and laser compatible-stealth material.展开更多
In this study, the performance of stable nanofluid containing SiO2 nanoparticles dispersed and stabilized in high salinity brine for asphaltene inhibition in dynamic condition is evaluated. In the first stage of this ...In this study, the performance of stable nanofluid containing SiO2 nanoparticles dispersed and stabilized in high salinity brine for asphaltene inhibition in dynamic condition is evaluated. In the first stage of this work, the stability of silica nanoparticles in different range of water salinity(0–100000 mg·L-1) is investigated. Next, stable nanofluid containing highest salinity is selected as asphaltene inhibitor agent to inject into the damaged core sample. The estimated values of oil recovery for base case, after damage process and after inhibition of asphaltene precipitation using nanofluid are 51.6%, 36.1% and 46.7%, respectively. The results showed the reduction in core damage after using nanofluid. In addition, the relative permeability curves are plotted for the base case, after damage process and also after inhibition of asphaltene precipitation using nanofluid. Comparison of relative permeability curves shows, relative permeability of oil phase decreased after damage process as compared with the base case. But after using nanofluid the oil relative permeability curve has shifted to the right and effective permeability of oil phase has been improved.展开更多
In this research,a numerical study of mixed convection of non-Newtonian fluid and magnetic field effect along a vertical wavy surface was investigated.A simple coordinate transformation to transform wavy surface to a ...In this research,a numerical study of mixed convection of non-Newtonian fluid and magnetic field effect along a vertical wavy surface was investigated.A simple coordinate transformation to transform wavy surface to a flat surface is employed.A cubic spline collocation numerical method is employed to analyze transformed equations.The effect of various parameters such as Reynolds number,volume fraction 0-,Hartmann number,and amplitude of wave length was evaluated in improving the performance of a wavy microchannel.According to the presented results,the sinusoidal shape of the microchannel has a direct impact on heat transfer.By increasing the microchannel wave amplitude,the Nusselt number has risen.On the other hand,increasing the heat transfer in the higher wavelength ratio corrugated channel is seen as an effective method of increasing the heat transfer,especially at higher Reynolds numbers.The results showed that with increasing Hartmann numbers,the flow line near thewall becomesmore regular and,according to the temperature gradient created,theNusselt number growth.展开更多
The following article has been retracted due to the fact that it cannot be accepted by the author as a journal publication. The Editorial Board takes a very strong respect to the author’s situation on this matter. Th...The following article has been retracted due to the fact that it cannot be accepted by the author as a journal publication. The Editorial Board takes a very strong respect to the author’s situation on this matter. This paper published in Journal of Biosciences and Medicines Vol.2 No.2, April 2014, has been removed from this site.展开更多
As a potential application of titanium-oxide nanoparticles, it is extremely important to investigate a detailed picture of the surface and interior structural properties of nanocrystalline materials, such as rutile an...As a potential application of titanium-oxide nanoparticles, it is extremely important to investigate a detailed picture of the surface and interior structural properties of nanocrystalline materials, such as rutile and anatase with diameters 7.0 and 4.5nm, respectively. X-ray absorption spectroscopy has been used to identify the local Ti environment and related electronic structure. We combine the experimental results at the Ti edge in both bulk and nano-crystals to determine the lattice distortion in terms of differently characteristic preedge features and the variation in the multiple-scattering region of X-ray absorption near-edge structure (XANES) spectra. The relationship between the transition peaks and the surface-to volume ratio is also discussed.展开更多
In this work,we report that the thermoelectric properties of Bi(0.52)Sb(1.48)Te3alloy can be enhanced by being composited with Mn Te nano particles(NPs)through a combined ball milling and spark plasma sintering...In this work,we report that the thermoelectric properties of Bi(0.52)Sb(1.48)Te3alloy can be enhanced by being composited with Mn Te nano particles(NPs)through a combined ball milling and spark plasma sintering(SPS)process.The addition of Mn Te into the host can synergistically reduce the lattice thermal conductivity by increasing the interface phononscattering between Bi(0.52)Sb(1.48)Te3 and MnTe NPs,and enhance the electrical transport properties by optimizing the hole concentration through partial Mn^2+ acceptor doping on the Bi^3+ sites of the host lattice.It is observed that the lattice thermal conductivity decreases with increasing the percentage of Mn Te and milling time in a temperature range from 300 Kto 500 K,which is consistent with the increasing of interfaces.Meanwhile,the bipolar effect is constrained to high temperatures,which results in the figure of merit z T peak shifting toward higher temperature and broadening the z T curves.The engineering z T is obtained to be 20%higher than that of the pristine sample for the 2-mol%Mn Te-added composite at a temperature gradient of 200 K when the cold end temperature is set to be 300 K.This result indicates that the thermoelectric performance of Bi0.52Sb1.48Te3 can be considerably enhanced by being composited with Mn Te NPs.展开更多
基金The authors thank D.Berger,D.Hofmann and C.Kupka in IFW Dresden for helpful technical support.H.R.acknowledges funding from the DFG(Deutsche Forschungsgemeinschaft)within grant number RE3973/1-1.Q.J.,H.R.and K.N.conceived the work.With the support from N.Y.and X.J.,Q.J.and T.G.fabricated the thermoelectric films and conducted the structural and compositional characterizations.Q.J.prepared microchips and fabricated the on-chip micro temperature controllers.Q.J.and N.P.carried out the temperature-dependent material and device performance measurements.Q.J.and H.R.performed the simulation and analytical calculations.Q.J.,H.R.and K.N.wrote the manuscript with input from the other coauthors.All the authors discussed the results and commented on the manuscript.
文摘Multidimensional integration and multifunctional com-ponent assembly have been greatly explored in recent years to extend Moore’s Law of modern microelectronics.However,this inevitably exac-erbates the inhomogeneity of temperature distribution in microsystems,making precise temperature control for electronic components extremely challenging.Herein,we report an on-chip micro temperature controller including a pair of thermoelectric legs with a total area of 50×50μm^(2),which are fabricated from dense and flat freestanding Bi2Te3-based ther-moelectric nano films deposited on a newly developed nano graphene oxide membrane substrate.Its tunable equivalent thermal resistance is controlled by electrical currents to achieve energy-efficient temperature control for low-power electronics.A large cooling temperature difference of 44.5 K at 380 K is achieved with a power consumption of only 445μW,resulting in an ultrahigh temperature control capability over 100 K mW^(-1).Moreover,an ultra-fast cooling rate exceeding 2000 K s^(-1) and excellent reliability of up to 1 million cycles are observed.Our proposed on-chip temperature controller is expected to enable further miniaturization and multifunctional integration on a single chip for microelectronics.
基金The work is supported in part by the National Natural Science Foundation of China(Grant Nos.62171483,82061148011)Zhejiang Provincial Natural Science Foundation of China(Grant No.LZ23F010004)+1 种基金Hangzhou Agricultural and Social Development Research Key Project(Grant No.20231203A08)Doctoral Initiation Program of the Tenth Affiliated Hospital,Southern Medical University(Grant No.K202308).
文摘The development of precise and sensitive electrophysiological recording platforms holds the utmost importance for research in the fields of cardiology and neuroscience.In recent years,active micro/nano-bioelectronic devices have undergone significant advancements,thereby facilitating the study of electrophysiology.The distinctive configuration and exceptional functionality of these active micro-nano-collaborative bioelectronic devices offer the potential for the recording of high-fidelity action potential signals on a large scale.In this paper,we review three-dimensional active nano-transistors and planar active micro-transistors in terms of their applications in electroexcitable cells,focusing on the evaluation of the effects of active micro/nano-bioelectronic devices on electrophysiological signals.Looking forward to the possibilities,challenges,and wide prospects of active micro-nano-devices,we expect to advance their progress to satisfy the demands of theoretical investigations and medical implementations within the domains of cardiology and neuroscience research.
基金the Fundamental Research Funds for the Central Universities(Grant No.30920041102)National Natural Science Foundation of China(Grant No.11802134).
文摘The arc ignition system based on charring polymers has advantages of simple structure,low ignition power consumption and multiple ignitions,which bringing it broadly application prospect in hybrid propulsion system of micro/nano satellite.However,charring polymers alone need a relatively high input voltage to achieve pyrolysis and ignition,which increases the burden and cost of the power system of micro/nano satellite in practical application.Adding conductive substance into charring polymers can effectively decrease the conducting voltage which can realize low voltage and low power consumption repeated ignition of arc ignition system.In this paper,a charring conductive polymer ignition grain with a cavity geometry in precombustion chamber,which is composed of PLA and multiwall carbon nanotubes(MWCNT)was proposed.The detailed ignition processes were analyzed and two different ignition mechanisms in the cavity of charring conductive polymers were revealed.The ignition characteristics of charring conductive polymers were also investigated at different input voltages,ignition grain structures,ignition locations and injection schemes in a visual ignition combustor.The results demonstrated that the ignition delay and external energy required for ignition were inversely correlated with the voltages applied to ignition grain.Moreover,the incremental depth of cavity shortened the ignition delay and external energy required for ignition while accelerated the propagation of flame.As the depth of cavity increased from 2 to 6 mm(at 50 V),the time of flame propagating out of ignition grain changed from 235.6 to 108 ms,and values of mean ignition delay time and mean external energy required for ignition decreased from 462.8 to 320 ms and 16.2 to 10.75 J,respectively.The rear side of the cavity was the ideal ignition position which had a shorter ignition delay and a faster flame propagation speed in comparison to other ignition positions.Compared to direct injection scheme,swirling injection provided a more favorable flow field environment in the cavity,which was beneficial to ignition and initial flame propagation,but the ignition position needed to be away from the outlet of swirling injector.At last,the repeated ignition characteristic of charring conductive polymers was also investigated.The ignition delay time and external energy required for ignition decreased with repeated ignition times but the variation was decreasing gradually.
文摘Micro- and nano-plastics (MNPs) are tiny plastic particles resulting from plastic product degradation. Soil MNPs have been identified as potential influential factors affecting various soil properties and crop biomass productivity. This mini-review provides a synthesis of recent findings concerning their effects on soil physicochemical properties, microorganisms, organic carbon content, soil nutrients, greenhouse gas emissions, soil fauna, and their impacts on plant ecophysiology, growth, and production. The results indicate that MNPs may markedly impede soil aggregation ability, increase porosity, decrease soil bulk density, enhance water retention capacity, influence soil pH and electrical conductivity, and escalate soil water evaporation. Exposure to MNPs may predominantly induce changes in soil microbial composition, reducing the diversity and complexity of microbial communities and microbial activity while enhancing soil organic carbon stability, influencing soil nutrient dynamics, and stimulating organic carbon decomposition and denitrification processes, leading to elevated soil respiration and methane emissions, and potentially decreasing soil nitrous oxide emission. Additionally, MNPs may adversely affect soil fauna, diminish seed germination rates, promote plant root growth, yet impair plant photosynthetic efficacy and biomass productivity. These findings contribute to a better understanding of the impacts and mechanistic foundations of MNPs. Future research avenues are suggested to further explore the impacts and economic implications.
基金supported by Specialized Research Fund for Doctoral Program of Higher Education of China (Grant No. 20060287019)Opening Research Fund of Jiangsu Provincial Key Laboratory of Tribology of China (Grant No. kjsmcx07001)Jiangsu Provincial Graduate Innovation Foundation of China (Grant No. CX08B-039Z)
文摘Nano-particles which can largely improve the microstructure and oxidation resistance of materials are often used as a strengthening component in metal matrix composites. However, few studies were reported on its application in the bond coat of duplex structure thermal barrier coating(TBC). Three kinds of NiCoCrAlY coatings strengthened by different nano-particles with the same addition (1%, mass fraction) were prepared by the laser cladding technique on Ni-based superalloy substrates, aiming to study the effects of the nano-particles on microstructure and oxidation resistance of NiCoCrAlY coatings (the bond coat of the duplex structure thermal barrier coatings). Scanning electron microscope (SEM), X-ray diffractometer(XRD) and thermogravimetry were employed to investigate their morphologies, phases and cyclic oxidation behaviors in atmosphere at 1 050℃, compared with the coating without nano-particles. With the addition of nano-particles, the growth pattern of the grains at the interface changed from epitaxial growth to non-epitaxial growth or part-epitaxial growth; slender dendrites were broken and cellularized; cracks and pores were restrained; and the oxidation weight-gain and the stripping resistance of the oxide scale were improved as well. Among the three kinds of nano-particles, the SiC nano-particles showed the most improvement on microstructure, while the CeO2 nano-particles were insufficient, but its effects on the oxidation resistance are the same as those of the SiC nano-particles. Based on the discussions of the influence mechanism, it is believed that CeO2 nano-particles would show better improvement than SiC nano-particles if the proper amount is added and the proper preparation technique of micro-nanometer composite powders is adopted, with the synergistic action of nanometer effect and reactive element effect.
基金FundedbytheNationalNaturalScienceFoundationofChi na (No .30 30 0 0 78)
文摘The tribological properties of Sialon sliding against AISI52100 steel ball under the lubrication of solid particle additives, as micro-borate particle and nano-PbS particle, were evaluated by a SRV ball-on-disc test rig. The chemical composition of the worn surface was characterized by X-ray photoelectron spectroscopy (XPS). The morphologies of the worn surfaces of Sialon were analyzed by scanning electron microscopy (SEM). The results show that the particles can reduce the friction coefficient of the pairs and the wear volume of Sialon significantly. The wear resistance of micro-borate is superior to that of nano-PbS while the friction-reducing ability of PbS is better than that of borate. According to the XPS and SEM results, the wear resistance of PbS is mainly depended on the tribochemical film mainly composed of PbSO 4, which deposited on the worn surface with good bonding strength. No tribochemical reaction or deposited film was detected or observed on the worn surface of Sialon under the lubrication of borate, indicating that the possible physically deposited film generated from micro particle can also greatly reduce the wear volume of Sialon, though the friction reducing ability of which is inferior to that of nano PbS particle.
基金Project(05JT1034) supported by the Planned Item of Science and Technology of Hunan Province, China
文摘La0.8Ba0.2MnO3 nano-particles were synthesized by sol-gel process, and the crystal structure and morphology were characterized by XRD and SEM, respectively. The complex permittivity and permeability were determined by microwave vector network analyzer in the frequency range of 2-18 GHz. The relationship between reflection coefficient and microwave frequency of La0.8Ba0.2 MnO3 was calculated based on measured data. The results show that the average diameter of La0.8Ba0.2MnO3 crystal powders is about 80 nm and the crystal structure is perovskite when being calcined at 800 ℃ for 2 h. The microwave absorbing peak is 13 dB at 6.7 GHz and the effective absorbing bandwidth above 10 dB reaches 1.8 GHz for the sample with the thickness of 2.6 mm. The microwave absorption can be attributed to both the dielectric loss and the magnetic loss from the loss tangents of the sample, but the former is greater than the latter.
文摘The surface of Titanium Hydride (TiH 2) is coated by Nano Titanium Dioxide (TiO 2) particles prepared in both of methods of hydrolysis reaction of Ti(OC 4H 9) 4 and base precipitation reaction of Ti(SO 4) 2. TiH 2 coated with nano TiO 2 particles, in which there is an oxidation film on its surface, shown in the experiments, will obviously achieve good effects on releasing hydrogen slowly in high temperature. There are different structures and properties of TiH 2 coated by nano TiO 2 particles prepared in different ways in high temperature, which can influence on releasing hydrogen.
文摘The paper presents the results of studies surface microrelief, frequency-temperature characteristics of the imaginary part of the dielectric permittivity and dielectric loss of PE+TlInSe2 composite materials in 25。C - 150。C temperature and 25 Hz - 1 MHz frequency range before and after application of the aluminum nano-particles with a size of 50 nm. The change in the amount of semicon-ductor filler TlInSe2 and aluminum nano-particles changes the state of the surface and the frequency-temperature characteristics of composite materials PE+xvol.%TlInSe2, which allows to obtain composites with the desired dielectric permittivity and dielectric loss.
基金Projects(60806032,20975107) supported by the National Natural Science Foundation of ChinaProject(2009R10064) supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars of Education Ministry,China+2 种基金 Project(2009R10064) supported by "Qianjiang Talent Program"Projects(2009A610058,2009A610030) supported by the Ningbo Natural Science Foundation,ChinaProject supported by K.C.WONG Magna Fund in Ningbo University,China
文摘SnO2 nano particles with various Pd-doping concentrations were prepared using a template-free hydrothermal method.The effects of Pd doping on the crystal structure,morphology,microstructure,thermal stability and surface chemistry of these nano particles were characterized by transmission electron microscope,X-ray diffractometer and X-ray photoelectron spectroscope respectively.It was observed that Pd-doping had little effect on the grain sizes of the obtained SnO2 nano particles during the hydrothermal route.During thermal annealing,Pd-doping could restrain the growth of grain sizes below 500℃ while the grain growth was promoted when the temperature increased to above 700℃.XPS results revealed that Pd existed in three chemical states in the as-synthesized sample as Pd^0,Pd^2+ and Pd^4+,respectively.Pd^4+ was the main state which was responsible for improving the gas-sensing property.The optimal Pd-doping concentration for better gas-sensing property and thermal stability was 2.0%-2.5% (mole fraction).
基金supported by the National Natural Science Foundation of China(51971040,52171101)the Natural Science Foundation of Chongqing(cstc2021jcyj-msxmX0613)+1 种基金the National Natural Science Foundation of China(52001036,51971044)the Independent Research Project of State Key Laboratory of Mechanical Transmissions(SKLMT-ZZKT-2022M12).
文摘Coating technologies are a commonly used way to protect metals against corrosion.However,with more and more severe service environments of materials,many protective coating systems often are not environmentally friendly or toxic as in the case of chromates.Based on the world’s abundant ideal magnesium(Mg)and its alloy,the smart self-healing anticorrosive coating can autonomously restore the damaged part of the coating according to the environmental changes,strengthen the corrosion protection ability,and prolong its service life.This paper reviews the research progress of smart self-healing coatings on Mg alloys.These coatings mostly contain suitable corrosion inhibitors encapsulated into micro/nano containers.Moreover,the different self-healing mechanisms and functionalities of micro/nano containers are discussed.The micro/nano containers range from inorganic nanocontainers such as mesoporous nanoparticles(silica(SiO_(2)),titanium dioxide(TiO_(2)),etc.),over inorganic clays(halloysite,hydrotalcite-like,zeolite),to organic nanocontainers such as polymer microcapsules,nanofibers,chitosan(CS)and cyclodextrin(CD),as well as,carbon materials such as graphene and carbon nanotubes and hybrids such as metal organic frameworks.The functioning of micro/nano containers can be divided in two principal groups:autonomous(based on defect filling and corrosion inhibition)and non-autonomous(based on dynamic bonds and shape memory polymers).Moreover,multi functionalities and composite applications of various micro/nano containers are summarized.At present,significant progress has been made in the preparation methods and technologies of micro/nano containers.Achieving long-term self-healing properties of coatings sensing of coating failure and early warning after self-healing function failure can be expected as the main development direction of self-healing corrosion protection coatings in the future.
基金supported by the National Natural Science Foundation of China(No.52070162)the National Key Research and Development Program of China(2018YFA0901300).
文摘Interfacial solar evaporation holds great promise to address the freshwater shortage.However,most interfacial solar evaporators are always filled with water throughout the evaporation process,thus bringing unavoidable heat loss.Herein,we propose a novel interfacial evaporation structure based on the micro–nano water film,which demonstrates significantly improved evaporation performance,as experimentally verified by polypyrrole-and polydopamine-coated polydimethylsiloxane sponge.The 2D evaporator based on the as-prepared sponge realizes an enhanced evaporation rate of 2.18 kg m^(−2)h^(−1)under 1 sun by fine-tuning the interfacial micro–nano water film.Then,a homemade device with an enhanced condensation function is engineered for outdoor clean water production.Throughout a continuous test for 40 days,this device demonstrates a high water production rate(WPR)of 15.9–19.4 kg kW^(−1)h^(−1)m^(−2).Based on the outdoor outcomes,we further establish a multi-objective model to assess the global WPR.It is predicted that a 1 m^(2)device can produce at most 7.8 kg of clean water per day,which could meet the daily drinking water needs of 3 people.Finally,this technology could greatly alleviate the current water and energy crisis through further large-scale applications.
基金supported by the Key Research and Development Program of Hebei Province(No.21351501D)A Provincial and Ministerial Scientific Research Project(LJ20212C031165)Basic Frontier Science and Technology Innovation Project of Army Engineering University of PLA(KYSZJQZL2210)。
文摘Sn_(1−x)Er_(x)O_(2)(x=0%,8%,16%,24%)micro/nanofibers were prepared by electrospinning combined with heat treatment using erbium nitrate,stannous chloride and polyvinylpyrrolidone(PVP)as raw materials.The target products were characterized by thermogravimetric analyzer,X-ray diffrotometer,fourier transform infrared spectrometer,scanning electron microscope,spectrophotometer and infrared emissivity tester,and the effects of Er^(3+)doping on its infrared and laser emissivity were studied.At the same time,the Sn_(1−x)Er_(x)O_(2)(x=0%,16%)doping models were constructed based on the first principles of density functional theory,and the related optoelectronic properties such as their energy band structure,density of states,reflectivity and dielectric constant were analyzed,and further explained the mechanism of Er^(3+)doping on SnO_(2)infrared emissivity and laser absorption from the point of electronic structure.The results showed that after calcination at 600℃,single rutile type SnO_(2)was formed,and the crystal structure was not changed by doping Er^(3+).The calcined products showed good fiber morphology,and the average fiber diameter was 402 nm.The infrared emissivity and resistivity of the samples both decreased first and then increased with the increase of Er^(3+)doping amount.When x=16%,the infrared emis-sivity of the sample was at least 0.71;and Er^(3+)doping can effectively reduce the reflectivity of SnO_(2)at 1.06μm and 1.55μm,when x=16%,its reflectivity at 1.06μm and 1.55μm are 50.5%and 40%,respectively,when x=24%,the reflectivity at 1.06μm and 1.55μm wavelengths are 47.3%and 42.1%,respectively.At the same time,the change of carrier concentration and electron transition before and after Er^(3+)doping were described by first-principle calculation,and the regulation mechanism of infrared emissivity and laser reflectivity was explained.This study provides a certain experimental and theoretical basis for the development of a single-type,light-weight and easily prepared infrared and laser compatible-stealth material.
基金the support of the Department of Petroleum Engineering, Amirkabir University of Technology during this study
文摘In this study, the performance of stable nanofluid containing SiO2 nanoparticles dispersed and stabilized in high salinity brine for asphaltene inhibition in dynamic condition is evaluated. In the first stage of this work, the stability of silica nanoparticles in different range of water salinity(0–100000 mg·L-1) is investigated. Next, stable nanofluid containing highest salinity is selected as asphaltene inhibitor agent to inject into the damaged core sample. The estimated values of oil recovery for base case, after damage process and after inhibition of asphaltene precipitation using nanofluid are 51.6%, 36.1% and 46.7%, respectively. The results showed the reduction in core damage after using nanofluid. In addition, the relative permeability curves are plotted for the base case, after damage process and also after inhibition of asphaltene precipitation using nanofluid. Comparison of relative permeability curves shows, relative permeability of oil phase decreased after damage process as compared with the base case. But after using nanofluid the oil relative permeability curve has shifted to the right and effective permeability of oil phase has been improved.
文摘In this research,a numerical study of mixed convection of non-Newtonian fluid and magnetic field effect along a vertical wavy surface was investigated.A simple coordinate transformation to transform wavy surface to a flat surface is employed.A cubic spline collocation numerical method is employed to analyze transformed equations.The effect of various parameters such as Reynolds number,volume fraction 0-,Hartmann number,and amplitude of wave length was evaluated in improving the performance of a wavy microchannel.According to the presented results,the sinusoidal shape of the microchannel has a direct impact on heat transfer.By increasing the microchannel wave amplitude,the Nusselt number has risen.On the other hand,increasing the heat transfer in the higher wavelength ratio corrugated channel is seen as an effective method of increasing the heat transfer,especially at higher Reynolds numbers.The results showed that with increasing Hartmann numbers,the flow line near thewall becomesmore regular and,according to the temperature gradient created,theNusselt number growth.
文摘The following article has been retracted due to the fact that it cannot be accepted by the author as a journal publication. The Editorial Board takes a very strong respect to the author’s situation on this matter. This paper published in Journal of Biosciences and Medicines Vol.2 No.2, April 2014, has been removed from this site.
基金One of us (Z.Y. Wu) was supported by 100-Talent Research Program of The Chinese Academy of Sciences. One of the authors (K. Ibrahim) is grateful to the National Natural Science Foundation of China (NSFC) for financial support (Grant No. 10074063) The
文摘As a potential application of titanium-oxide nanoparticles, it is extremely important to investigate a detailed picture of the surface and interior structural properties of nanocrystalline materials, such as rutile and anatase with diameters 7.0 and 4.5nm, respectively. X-ray absorption spectroscopy has been used to identify the local Ti environment and related electronic structure. We combine the experimental results at the Ti edge in both bulk and nano-crystals to determine the lattice distortion in terms of differently characteristic preedge features and the variation in the multiple-scattering region of X-ray absorption near-edge structure (XANES) spectra. The relationship between the transition peaks and the surface-to volume ratio is also discussed.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.U1601213 and 51472052)the Funds from Institute of Physics,Chinese Academy of Sciences
文摘In this work,we report that the thermoelectric properties of Bi(0.52)Sb(1.48)Te3alloy can be enhanced by being composited with Mn Te nano particles(NPs)through a combined ball milling and spark plasma sintering(SPS)process.The addition of Mn Te into the host can synergistically reduce the lattice thermal conductivity by increasing the interface phononscattering between Bi(0.52)Sb(1.48)Te3 and MnTe NPs,and enhance the electrical transport properties by optimizing the hole concentration through partial Mn^2+ acceptor doping on the Bi^3+ sites of the host lattice.It is observed that the lattice thermal conductivity decreases with increasing the percentage of Mn Te and milling time in a temperature range from 300 Kto 500 K,which is consistent with the increasing of interfaces.Meanwhile,the bipolar effect is constrained to high temperatures,which results in the figure of merit z T peak shifting toward higher temperature and broadening the z T curves.The engineering z T is obtained to be 20%higher than that of the pristine sample for the 2-mol%Mn Te-added composite at a temperature gradient of 200 K when the cold end temperature is set to be 300 K.This result indicates that the thermoelectric performance of Bi0.52Sb1.48Te3 can be considerably enhanced by being composited with Mn Te NPs.