Miniaturized sound generators are attractive to realize intriguing functions.Thermoacoustic device’s application is seriously limited due to the frequency-doubling phenomenon.To address this issue,photoacoustic sound...Miniaturized sound generators are attractive to realize intriguing functions.Thermoacoustic device’s application is seriously limited due to the frequency-doubling phenomenon.To address this issue,photoacoustic sound generator is considered as a promising alternative.Here,based on vertical single-wall carbon nanotubes(CNTs)array,we introduce a photoacoustic sound generator with internal nano-Helmholtz cavity.Different from traditional device that generates sound by periodically heating up the open space air around material,this sound generator produces an audio signal by forming a forced vibration of the air inside the CNTs.Interestingly,anomalous photoacoustic behavior is observed that the sound pressure level(SPL)curve has a resonance peak,the corresponding frequency of which is inversely proportional to the CNTs array’s height.Furthermore,the energy conversion efficiency of this photoacoustic device is 1.64 times as large as that of a graphene sponge-based photoacoustic device.Most importantly,this device can be employed for music playing,bringing a new clew for the development of musical instruments in the future.展开更多
Scattering of the shear waves by a nano-sized cylindrical hole embedded the inhomogeneous is investigated in this study. The Helmholtz equation with a variable coefficient is transformed the standard Helmholtz equatio...Scattering of the shear waves by a nano-sized cylindrical hole embedded the inhomogeneous is investigated in this study. The Helmholtz equation with a variable coefficient is transformed the standard Helmholtz equation by the complex function method and the conformal mapping method. By wave function expanding method, the analytical expressions of the displacement field and stress field in the inhomogeneous medium are obtained. Considering the surface effect and using the generalized Young-Laplace equation, we obtain the boundary conditions at nano arbitrary-shaped hole, then the field equations satisfying boundary conditions are attributed to solving a set of infinite algebraic equations. Numerical results show that when the radius of the cylindrical cavity shrinks to nanometers, surface energy becomes a dominant factor that affects the dynamic stress concentration factor (DSCF) around the cylindrical cavity. The influence the density variation of the inhomogeneity on the DSCF is discussed at the same time.展开更多
文摘Miniaturized sound generators are attractive to realize intriguing functions.Thermoacoustic device’s application is seriously limited due to the frequency-doubling phenomenon.To address this issue,photoacoustic sound generator is considered as a promising alternative.Here,based on vertical single-wall carbon nanotubes(CNTs)array,we introduce a photoacoustic sound generator with internal nano-Helmholtz cavity.Different from traditional device that generates sound by periodically heating up the open space air around material,this sound generator produces an audio signal by forming a forced vibration of the air inside the CNTs.Interestingly,anomalous photoacoustic behavior is observed that the sound pressure level(SPL)curve has a resonance peak,the corresponding frequency of which is inversely proportional to the CNTs array’s height.Furthermore,the energy conversion efficiency of this photoacoustic device is 1.64 times as large as that of a graphene sponge-based photoacoustic device.Most importantly,this device can be employed for music playing,bringing a new clew for the development of musical instruments in the future.
文摘Scattering of the shear waves by a nano-sized cylindrical hole embedded the inhomogeneous is investigated in this study. The Helmholtz equation with a variable coefficient is transformed the standard Helmholtz equation by the complex function method and the conformal mapping method. By wave function expanding method, the analytical expressions of the displacement field and stress field in the inhomogeneous medium are obtained. Considering the surface effect and using the generalized Young-Laplace equation, we obtain the boundary conditions at nano arbitrary-shaped hole, then the field equations satisfying boundary conditions are attributed to solving a set of infinite algebraic equations. Numerical results show that when the radius of the cylindrical cavity shrinks to nanometers, surface energy becomes a dominant factor that affects the dynamic stress concentration factor (DSCF) around the cylindrical cavity. The influence the density variation of the inhomogeneity on the DSCF is discussed at the same time.