This paper presents an accurate analytical model of the random telegraph signal (RTS) noise time-constant ratio (-T/-Te) for RTS noise in nano-MOSFETs, in which the Coulomb-blockade effect on trapping and detrappi...This paper presents an accurate analytical model of the random telegraph signal (RTS) noise time-constant ratio (-T/-Te) for RTS noise in nano-MOSFETs, in which the Coulomb-blockade effect on trapping and detrapping processes was taken into account. Based on this new model, the depth of the trap responsible for RTS noise in a sample n-type nano-MOSFET is extracted. The results show that large errors will be introduced to the calculated trap depth when the Coulomb-blockade effect is neglected.展开更多
This paper presents the quasi-ballistic electron transport of a symmetric double-gate (DG) nano-MOSFET with 10 nm gate length and implementation of logical NOT transistor circuit using this nano-MOSFET. Theoretical ca...This paper presents the quasi-ballistic electron transport of a symmetric double-gate (DG) nano-MOSFET with 10 nm gate length and implementation of logical NOT transistor circuit using this nano-MOSFET. Theoretical calculation and simulation using NanoMOS have been done to obtain parameters such as ballistic efficiency, backscattering mean free path, backscattering coefficient, critical length, thermal velocity, capacitances, resistance and drain current. NanoMOS is an on-line device simulator. Theoretical and simulated drain current per micro of width is closely matched. Transistor loaded NOT gate is simulated using WinSpice. Theoretical and simulated value of rise time, fall time, propagation delay and maximum signal frequency of logical NOT transistor level circuit is closely matched. Quasi-ballistic transport has been investigated in this paper since modern MOSFET devices operate between the drift-diffusion and ballistic regimes. This paper aims to enable modern semiconductor device engineers to become familiar with both approaches.展开更多
Deviation of threshold voltage and effective mobility due to random dopant fluctuation is proposed.An improved 65 nm average drain current MOS model calledαlaw is utilized after fitting HSPICE simulating data and ext...Deviation of threshold voltage and effective mobility due to random dopant fluctuation is proposed.An improved 65 nm average drain current MOS model calledαlaw is utilized after fitting HSPICE simulating data and extracting process parameters.Then,a current mismatch model of nanoscale MOSFETs induced by random dopant fluctuation is presented based on propagation of variation theory.In test conditions,the calculated standard deviation applying this model,compared to 100 times Monte-Carlo simulation data with HSPICE,indicates that the average relative error and relative standard deviation is 0.24%and 0.22%,respectively.The results show that this mismatch model is effective to illustrate the physical mechanism,as well as being simple and accurate.展开更多
为满足雷达阵面高功率密度的需求,SiC宽禁带半导体器件在电源模块应用中逐步取代传统硅功率器件。传统焊接及导电胶粘工艺存在导电性能差、热阻大、高温蠕变等缺点,无法发挥SiC功率器件高结温和高功率的优势。纳米银烧结是大功率器件最...为满足雷达阵面高功率密度的需求,SiC宽禁带半导体器件在电源模块应用中逐步取代传统硅功率器件。传统焊接及导电胶粘工艺存在导电性能差、热阻大、高温蠕变等缺点,无法发挥SiC功率器件高结温和高功率的优势。纳米银烧结是大功率器件最合适的界面互连技术之一,具有低温烧结高温使用的优点和良好的高温工作特性。文中针对高功率电源模块大电流传输对低压降及高效散热的需求,基于高功率半桥电源模块开展了SiC芯片的纳米银双面烧结工艺技术研究,突破了成型银焊片制备、纳米银焊膏高平整度点涂、无压烧结等关键技术,并通过烧结界面微观分析以及芯片剪切强度和焊片剥离强度测试对烧结工艺参数进行了优化。最后对半桥模块进行了静态测试和双脉冲测试。该模块的栅极泄漏电流<1.5 n A,开关切换时间<125 ns,漏极电压过冲<12.5%,满足产品应用需求。展开更多
DG-MOSFETs are the most widely explored device architectures for na</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="f...DG-MOSFETs are the most widely explored device architectures for na</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">no-scale CMOS circuit design in sub-50 nm due to the improved subthre</span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">shold slope and the reduced leakage power compared to bulk MOSFETs. In thin-film (</span><i><span style="font-family:Verdana;">t</span><sub><span style="font-family:Verdana;">si</span></sub></i><span style="font-family:Verdana;"> < 10 nm) DG-MOS structures, charge carriers are affected</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> by</span></span></span><span><span><span style="font-family:""> <i><span style="font-family:Verdana;">t</span><sub><span style="font-family:Verdana;">si</span></sub></i><span style="font-family:Verdana;">-</span></span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">induced quantum confinement along with the confinement caused by </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">a </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">very high electric field at the interface. Therefore, quantum confinement effects on the device characteristics are also quite important and it needs to be incorpo</span><span style="font-family:Verdana;">rated along with short channel effects for nano-scale circuit design. In this</span> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">paper</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">, we analyze</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">d</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> a DG-MOSFET structure at </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">the </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">20 nm technology node</span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;"> incorporating quantum confinement effects and various short channel effects. The effect of physical parameter variations on performance characteristics of </span><span><span style="font-family:Verdana;">the device such as threshold voltage, subthreshold slope, </span><i><span style="font-family:Verdana;">I</span><sub><span style="font-family:Verdana;">ON</span></sub></i><span style="font-family:Verdana;"> - </span><i><span style="font-family:Verdana;">I</span><sub><span style="font-family:Verdana;">OFF</span></sub></i><span style="font-family:Verdana;"> ratio,</span></span> <i><span style="font-family:Verdana;">DIBL</span></i></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">,</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> etc. has been investigated and plotted through extensive TCAD simulations. The physical parameters considered in this </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">paper</span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;"> are operating temperature </span><span><span style="font-family:Verdana;">(</span><i><span style="font-family:Verdana;">T</span><sub><span style="font-family:Verdana;">op</span></sub></i><span style="font-family:Verdana;">), channel doping concentration (</span><i><span style="font-family:Verdana;">N</span><sub><span style="font-family:Verdana;">c</span></sub></i><span style="font-family:Verdana;">), gate oxide thickness (</span><i><span style="font-family:Verdana;">t</span><sub><span style="font-family:Verdana;">ox</span></sub></i><span style="font-family:Verdana;">) an</span></span><span style="font-family:Verdana;">d Silicon film thickness (</span><i><span style="font-family:Verdana;">t</span><sub><span style="font-family:Verdana;">si</span></sub></i><span style="font-family:Verdana;">). It </span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">was</span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;"> observed that quantum confinement of </span><span style="font-family:Verdana;">charge </span><span style="font-family:Verdana;">carriers significantly affect</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ed</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> the performance characteristics (mostly the</span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;"> subth</span><span style="font-family:Verdana;">reshold characteristics) of the device and therefore, it cannot be ignored in</span><span style="font-family:Verdana;"> the </span><span style="font-family:Verdana;">subthreshold region</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">based circuit design like in many previous research</span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;"> works. </span><span><span style="font-family:Verdana;">The ATLAS</span><sup><span style="font-family:Verdana;">TM</span></sup><span style="font-family:Verdana;"> device simulator has been used in this </span></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">paper</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> to perform simu</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">lation and parameter extraction. The TCAD analysis presented in the</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> manuscript can be incorporated for device modeling and device</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> matching. It can be used to illustrate exact device behavior and for proper device control.展开更多
文摘This paper presents an accurate analytical model of the random telegraph signal (RTS) noise time-constant ratio (-T/-Te) for RTS noise in nano-MOSFETs, in which the Coulomb-blockade effect on trapping and detrapping processes was taken into account. Based on this new model, the depth of the trap responsible for RTS noise in a sample n-type nano-MOSFET is extracted. The results show that large errors will be introduced to the calculated trap depth when the Coulomb-blockade effect is neglected.
文摘This paper presents the quasi-ballistic electron transport of a symmetric double-gate (DG) nano-MOSFET with 10 nm gate length and implementation of logical NOT transistor circuit using this nano-MOSFET. Theoretical calculation and simulation using NanoMOS have been done to obtain parameters such as ballistic efficiency, backscattering mean free path, backscattering coefficient, critical length, thermal velocity, capacitances, resistance and drain current. NanoMOS is an on-line device simulator. Theoretical and simulated drain current per micro of width is closely matched. Transistor loaded NOT gate is simulated using WinSpice. Theoretical and simulated value of rise time, fall time, propagation delay and maximum signal frequency of logical NOT transistor level circuit is closely matched. Quasi-ballistic transport has been investigated in this paper since modern MOSFET devices operate between the drift-diffusion and ballistic regimes. This paper aims to enable modern semiconductor device engineers to become familiar with both approaches.
文摘Deviation of threshold voltage and effective mobility due to random dopant fluctuation is proposed.An improved 65 nm average drain current MOS model calledαlaw is utilized after fitting HSPICE simulating data and extracting process parameters.Then,a current mismatch model of nanoscale MOSFETs induced by random dopant fluctuation is presented based on propagation of variation theory.In test conditions,the calculated standard deviation applying this model,compared to 100 times Monte-Carlo simulation data with HSPICE,indicates that the average relative error and relative standard deviation is 0.24%and 0.22%,respectively.The results show that this mismatch model is effective to illustrate the physical mechanism,as well as being simple and accurate.
文摘为满足雷达阵面高功率密度的需求,SiC宽禁带半导体器件在电源模块应用中逐步取代传统硅功率器件。传统焊接及导电胶粘工艺存在导电性能差、热阻大、高温蠕变等缺点,无法发挥SiC功率器件高结温和高功率的优势。纳米银烧结是大功率器件最合适的界面互连技术之一,具有低温烧结高温使用的优点和良好的高温工作特性。文中针对高功率电源模块大电流传输对低压降及高效散热的需求,基于高功率半桥电源模块开展了SiC芯片的纳米银双面烧结工艺技术研究,突破了成型银焊片制备、纳米银焊膏高平整度点涂、无压烧结等关键技术,并通过烧结界面微观分析以及芯片剪切强度和焊片剥离强度测试对烧结工艺参数进行了优化。最后对半桥模块进行了静态测试和双脉冲测试。该模块的栅极泄漏电流<1.5 n A,开关切换时间<125 ns,漏极电压过冲<12.5%,满足产品应用需求。
基金Supported by the National Natural Science Foundation of China(No.60576066,No.60644007)the Natural Science Foundation of Anhui Province(No.2006kj012a).
文摘DG-MOSFETs are the most widely explored device architectures for na</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">no-scale CMOS circuit design in sub-50 nm due to the improved subthre</span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">shold slope and the reduced leakage power compared to bulk MOSFETs. In thin-film (</span><i><span style="font-family:Verdana;">t</span><sub><span style="font-family:Verdana;">si</span></sub></i><span style="font-family:Verdana;"> < 10 nm) DG-MOS structures, charge carriers are affected</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> by</span></span></span><span><span><span style="font-family:""> <i><span style="font-family:Verdana;">t</span><sub><span style="font-family:Verdana;">si</span></sub></i><span style="font-family:Verdana;">-</span></span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">induced quantum confinement along with the confinement caused by </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">a </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">very high electric field at the interface. Therefore, quantum confinement effects on the device characteristics are also quite important and it needs to be incorpo</span><span style="font-family:Verdana;">rated along with short channel effects for nano-scale circuit design. In this</span> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">paper</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">, we analyze</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">d</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> a DG-MOSFET structure at </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">the </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">20 nm technology node</span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;"> incorporating quantum confinement effects and various short channel effects. The effect of physical parameter variations on performance characteristics of </span><span><span style="font-family:Verdana;">the device such as threshold voltage, subthreshold slope, </span><i><span style="font-family:Verdana;">I</span><sub><span style="font-family:Verdana;">ON</span></sub></i><span style="font-family:Verdana;"> - </span><i><span style="font-family:Verdana;">I</span><sub><span style="font-family:Verdana;">OFF</span></sub></i><span style="font-family:Verdana;"> ratio,</span></span> <i><span style="font-family:Verdana;">DIBL</span></i></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">,</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> etc. has been investigated and plotted through extensive TCAD simulations. The physical parameters considered in this </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">paper</span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;"> are operating temperature </span><span><span style="font-family:Verdana;">(</span><i><span style="font-family:Verdana;">T</span><sub><span style="font-family:Verdana;">op</span></sub></i><span style="font-family:Verdana;">), channel doping concentration (</span><i><span style="font-family:Verdana;">N</span><sub><span style="font-family:Verdana;">c</span></sub></i><span style="font-family:Verdana;">), gate oxide thickness (</span><i><span style="font-family:Verdana;">t</span><sub><span style="font-family:Verdana;">ox</span></sub></i><span style="font-family:Verdana;">) an</span></span><span style="font-family:Verdana;">d Silicon film thickness (</span><i><span style="font-family:Verdana;">t</span><sub><span style="font-family:Verdana;">si</span></sub></i><span style="font-family:Verdana;">). It </span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">was</span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;"> observed that quantum confinement of </span><span style="font-family:Verdana;">charge </span><span style="font-family:Verdana;">carriers significantly affect</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ed</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> the performance characteristics (mostly the</span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;"> subth</span><span style="font-family:Verdana;">reshold characteristics) of the device and therefore, it cannot be ignored in</span><span style="font-family:Verdana;"> the </span><span style="font-family:Verdana;">subthreshold region</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">based circuit design like in many previous research</span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;"> works. </span><span><span style="font-family:Verdana;">The ATLAS</span><sup><span style="font-family:Verdana;">TM</span></sup><span style="font-family:Verdana;"> device simulator has been used in this </span></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">paper</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> to perform simu</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">lation and parameter extraction. The TCAD analysis presented in the</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> manuscript can be incorporated for device modeling and device</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> matching. It can be used to illustrate exact device behavior and for proper device control.