Nano-ring-type magnetic tunnel junctions (NR-MTJs) with the layer structure of Ta(5)/Ir22Mn78(10)/ Co75Fe25(2)/Ru(0.75)/CoooFe20B20(3)/Al(0.6)-oxide/Co60Fe20B20(2.5)/Ta(3)/Ru(5) (thickness unit:...Nano-ring-type magnetic tunnel junctions (NR-MTJs) with the layer structure of Ta(5)/Ir22Mn78(10)/ Co75Fe25(2)/Ru(0.75)/CoooFe20B20(3)/Al(0.6)-oxide/Co60Fe20B20(2.5)/Ta(3)/Ru(5) (thickness unit: nm) were nano-fabricated on the Si(100)/SiO2 substrate using magnetron sputtering deposition combined with the optical lithography, electron beam lithography (EBL) and Ar ion-beam etching techniques. The smaller NR-MTJs with the inner- and outer-diameter of around 50 and 100 nm and also their corresponding NR-MTJ arrays were nano-patterned. The tunnelling magnetoresistance (TMR & R) versus driving current (I) loops for a spin-polarized current switching were measured, and the TMR ratio of around 35% at room temperature were observed. The critical values of switching current for the free Co60Fe20B20 layer relative to the reference Co6oFe2oB2o layer between parallel and anti-parallel magnetization states were between 0.50 and 0.75 mA in such NR-MTJs. It is suggested that the applicable MRAM fabrication with the density and capacity higher than 256 Mbit/inch2 even 6 Gbite/inch2 are possible using both I NR-MTJ+1 transistor structure and current switching mechanism based on based on our fabricated 4×4 MRAM demo devices.展开更多
GaAs multiple concentric nano-ring structures(CNRs)are prepared with multistep crystallization procedures by droplets epitaxy on GaAs(001)to explore the influence of different initial crystallization temperatures on C...GaAs multiple concentric nano-ring structures(CNRs)are prepared with multistep crystallization procedures by droplets epitaxy on GaAs(001)to explore the influence of different initial crystallization temperatures on CNRs morphology.Atomic force microscope(AFM)images show that GaAs nanostructures are more likely to form elliptical rings due to diffusion anisotropy.Meanwhile,with the increase of initial crystallization temperature,the inner ring height and density of CNRs are increased,and outer rings are harder to form.In addition,the mechanism of formation of CNRs is discussed by classical nucleation theory and diffusion theory.The method can be used to calculate the diffusion activation energy of gallium atoms(0.7±0.1 eV)on the GaAs(001)surface conveniently.展开更多
基金the State Key Project of Fundamental Research of Ministry of Science and Technology (No. 2006CB932200) the National Natural Science Foundation of China (NSFC, No. 10574156)+2 种基金 the Knowledge Innovation Program of Chinese Aca.demy of Sciencesthe protial support of 0utstanding Young Researcher Foundation (Nos. 50325104 and 50528101) K.C.Wong Education Foundation, Hong Kong.
文摘Nano-ring-type magnetic tunnel junctions (NR-MTJs) with the layer structure of Ta(5)/Ir22Mn78(10)/ Co75Fe25(2)/Ru(0.75)/CoooFe20B20(3)/Al(0.6)-oxide/Co60Fe20B20(2.5)/Ta(3)/Ru(5) (thickness unit: nm) were nano-fabricated on the Si(100)/SiO2 substrate using magnetron sputtering deposition combined with the optical lithography, electron beam lithography (EBL) and Ar ion-beam etching techniques. The smaller NR-MTJs with the inner- and outer-diameter of around 50 and 100 nm and also their corresponding NR-MTJ arrays were nano-patterned. The tunnelling magnetoresistance (TMR & R) versus driving current (I) loops for a spin-polarized current switching were measured, and the TMR ratio of around 35% at room temperature were observed. The critical values of switching current for the free Co60Fe20B20 layer relative to the reference Co6oFe2oB2o layer between parallel and anti-parallel magnetization states were between 0.50 and 0.75 mA in such NR-MTJs. It is suggested that the applicable MRAM fabrication with the density and capacity higher than 256 Mbit/inch2 even 6 Gbite/inch2 are possible using both I NR-MTJ+1 transistor structure and current switching mechanism based on based on our fabricated 4×4 MRAM demo devices.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61564002 and 11664005)the Science and Technology Foundation of Guizhou Province,China(Grant No.QKH-[2017]1055)Guizhou University Talent Foundation(Grant No.GDJHZ-[2015]23)。
文摘GaAs multiple concentric nano-ring structures(CNRs)are prepared with multistep crystallization procedures by droplets epitaxy on GaAs(001)to explore the influence of different initial crystallization temperatures on CNRs morphology.Atomic force microscope(AFM)images show that GaAs nanostructures are more likely to form elliptical rings due to diffusion anisotropy.Meanwhile,with the increase of initial crystallization temperature,the inner ring height and density of CNRs are increased,and outer rings are harder to form.In addition,the mechanism of formation of CNRs is discussed by classical nucleation theory and diffusion theory.The method can be used to calculate the diffusion activation energy of gallium atoms(0.7±0.1 eV)on the GaAs(001)surface conveniently.