In this study,to meet the stringent requirements on the hydrophobicity of nano-SiO_(2)particles for use in depressurization and enhanced injection operations in high-temperature and high-salinity oil reservoirs,second...In this study,to meet the stringent requirements on the hydrophobicity of nano-SiO_(2)particles for use in depressurization and enhanced injection operations in high-temperature and high-salinity oil reservoirs,secondary chemical grafting modification of nano-SiO_(2)is performed using a silane coupling agent to prepare superhydrophobic nano-SiO_(2) particles.Using these superhydrophobic nano-SiO_(2)particles as the core agent,and liquid paraffin or diesel as the dispersion medium,a uniform dispersion of nano-SiO_(2)particles is achieved under high-speed stirring,and a chemically enhanced water injection system with colloidal stability that can be maintained for more than 60 d is successfully developed.Using this system,a field test of depressurization and enhanced injection is carried out on six wells in an oilfield,and the daily oil production level is increased by 11 t.The cumulative increased water injection is 58784 m^(3),the effective rate of the measures was 100%,and the average validity period is 661 d.展开更多
Nano-SiO_2 with high activity and mesopores was prepared through sol-gel synthesis followed by low-temperatureheat treatment and ball milling firstly in our experiments. TEM was performed to measure particle sizes. Ni...Nano-SiO_2 with high activity and mesopores was prepared through sol-gel synthesis followed by low-temperatureheat treatment and ball milling firstly in our experiments. TEM was performed to measure particle sizes. Nitrogenadsorption experiments were carried out to estimate specific surface area, porous distribution and porous ratio by BETand BJH methods. The content of Si-OH in SiO_2 surface was calculated by analysis of the results of hydrogen-oxygencontent mensuration (HOCM). As a result, appropriate heat treatment system and ball milling time are important topreparation for nano-SiO_2 with high activity and mesopores, which are 5~50 nm particles, 5~6 nm average aperture,85%~93% porous ratio, and 51%~55% Si-OH content in surface. Nano-SiO_2 with that structure has high surfaceenergy and activity. This process, which has simple facilities and operation rules, is a new way of preparation fornano-SiO_2 with high activity and mesopores.展开更多
A novel method of ultra-trace Cd(Ⅱ) preconcentration with nanometer-size TiO2 colloid and determination by graphite furnace atomic adsorption spectrometry(GFAAS) with slurry sampling was first advanced in this pa...A novel method of ultra-trace Cd(Ⅱ) preconcentration with nanometer-size TiO2 colloid and determination by graphite furnace atomic adsorption spectrometry(GFAAS) with slurry sampling was first advanced in this paper. The adsorption efficiency of nanometer-size TiO2 colloid for ultra-trace Cd(Ⅱ) could reach above 96% in a short time when the pH value was between 5 and 6. Other problems were also studied, such as adsorption capacity, nanometer-size TiO2 colloid dosage, effect of coexistent ions. The detection limit(3σ) and the relative standard deviation (R.S.D) of this method were 4.46.103 μg/L and 1.30%(n=7), respectively. The method was successfully applied to the analysis of environmental samples with recoveries between 93.8% and 96.4%.展开更多
WO2 and TiO2 colMds were synthesized by the hydrolysis technique and part of the TiO2 colloid was treated by means of the hydrothermal method. The photochromic performances of the resulting materials obtained via comb...WO2 and TiO2 colMds were synthesized by the hydrolysis technique and part of the TiO2 colloid was treated by means of the hydrothermal method. The photochromic performances of the resulting materials obtained via combining the WO3 colloid with the treated TiO2 colloid and the non-treated TiO2 colloid, respectively, are very different. The TiO2 colloid without hydrothermal treatment can effectively improve the photochromic performance of the WO3colloid. The TiO2 nanoparticles were investigated in detail by XRD, TEM, surface photovohage spectra(SPS) and field-induced surface photovoltage spectrometry(FISPS). The photochromism mechanism of WO3 colloid is discussed.展开更多
A new absorbent of nanometer-size TiO2 colloid for Cu(Ⅱ ) was studied in this work. The adsorption rate could reach above 99% when the pH values were at the range of 5-6. The adsorption balance time, adsorption cap...A new absorbent of nanometer-size TiO2 colloid for Cu(Ⅱ ) was studied in this work. The adsorption rate could reach above 99% when the pH values were at the range of 5-6. The adsorption balance time, adsorption capacities, and the eluent were investigated. A novel method of trace Cu( Ⅱ ) preconcentration and separation with nanometer-size titanium dioxide colloid and determination by flame atomic absorption spectrometry (FAAS) was advanced. The detection limit (3a) of the method was 1.15 μg · L^-1, and the relative standard deviation (R.S.D) was 1.53% (n=6). Environmental sample experiments were also conducted to test the feasibility of the method, and it came out that the recovery rates were between 95.9% and 97.8%.展开更多
Both green and residual bending strength of the dip-coat layer composed of ZrO2 (CaO) powder and colloi-dal zirconiz sol binder are sutdied and the effects of process factrs on the strength of dip-coat layer are inter...Both green and residual bending strength of the dip-coat layer composed of ZrO2 (CaO) powder and colloi-dal zirconiz sol binder are sutdied and the effects of process factrs on the strength of dip-coat layer are interpreted,using the results of TG-DTA ,TMA and SEM analyses of the fracture morphology of the coating layer and following the strength theory for porous body.展开更多
The present status and development trends of nano-composite coatings were briefly introduced. The nano-SiO2 was dispersed into crylic acid resin by ultrasonic wave and high-energy ball milling, the influence of nano-S...The present status and development trends of nano-composite coatings were briefly introduced. The nano-SiO2 was dispersed into crylic acid resin by ultrasonic wave and high-energy ball milling, the influence of nano-SiO2 on shielding property of coatings was investigated. Relation between particle size distribution of original nano-SiO2 and its dispersal in water and alcohol after treatment were analyzed, respectively. The ultraviolet permeation rate of coatings filled with nano-SiO2 was detected by ultraviolet spectral photometer. And the particle size distribution of coatings was examined by TEM. The results show that particle size distribution is comparative convergence and smaller one order of magnitude after dispersal treatment. The size of most nano-SiO2 in coatings is smaller than 100nm, which indicates that the amount of nano-SiO2 in the resin is 20% (solid content of resin), the permeation rate of ultraviolet of composite coatings decreases to 20%. The research of its excellent ultraviolet shielding property mechanism indicates minor size and high surface energy of nano-SiO2 can produce different absorption, reflection and scatter actions to different wavelengths.展开更多
The mechanical properties of wood flour/high-density polyethylene composites(WPC)were improved by adding a small amount of nano-SiO_(2)to obtain a network-structured WPC with a continuous honeycomb-like nano-SiO_(2)ne...The mechanical properties of wood flour/high-density polyethylene composites(WPC)were improved by adding a small amount of nano-SiO_(2)to obtain a network-structured WPC with a continuous honeycomb-like nano-SiO_(2)network.The wood flour was modified with a fire retardant(a mixture of sodium octabonate and amidine urea phosphate)to improve its fire retardancy.The flexural properties,creep resistance,thermal expansion,and fire retardancy of the WPC were compared to a control(WPCCTRL)without nano-SiO_(2)or fire retardant.The flexural strength and modulus of the WPC containing only 0.55 wt.%nano-SiO_(2)were 6.6%and 9.1%higher than the control,respectively,while the creep strain and thermal expansion rate at 90°C were 33.8%and 13.6%lower,respectively.The cone calorimetry tests revealed that the nano-SiO_(2)network physically shielded the WPC,giving it lower heat release and smoke production rates.The thermal expansion was further decreased by incorporating fire retardants into the WPC,which showed the lowest total heat release and total smoke production and the highest mass retention.This study demonstrates a facile procedure for producing WPC with desired performances by forming a continuous honeycomb-like network by adding a small amount of nanoparticles.展开更多
We present a self-assembly method to prepare array nano-wires of colloidal CdSe quantum dots on a substrate of porous Al2 O3 film modified by gold nanoparticles. The photoluminescence(PL) spectra of nanowires are in s...We present a self-assembly method to prepare array nano-wires of colloidal CdSe quantum dots on a substrate of porous Al2 O3 film modified by gold nanoparticles. The photoluminescence(PL) spectra of nanowires are in situ measured by using a scanning near-field optical microscopy(SNOM) probe tip with 100-nm aperture on the scanning near-field optical microscope. The results show that the binding sites from the edge of porous Al2 O3 nanopores are combined with the carboxyl of CdSe quantum dots’ surface to form an array of CdSe nanowires in the process of losing background solvent because of the gold nanoparticles filling the nano-holes of porous Al2 O3 film. Compared with the area of nonself-assembled nano-wire, the fluorescence on the Al2 O3/Au/CdSe interface is significantly enhanced in the self-assembly nano-wire regions due to the electron transfer conductor effect of the gold nanoparticles’ surface. In addition, its full width at half maximum(FWHM) is also obviously widened. The method of enhancing fluorescence and energy transfer can widely be applied to photodetector, photocatalysis, optical display, optical sensing, and biomedical imaging, and so on.展开更多
A kind of modified epoxy resins was obtained by condensation of epoxy resin with silicic acid tetraethyl ester(TEOS) and nano-SiO2. The reactions were performed with hydrochloric acid as a catalyst at 63 ℃. The str...A kind of modified epoxy resins was obtained by condensation of epoxy resin with silicic acid tetraethyl ester(TEOS) and nano-SiO2. The reactions were performed with hydrochloric acid as a catalyst at 63 ℃. The structure, thermal stability and morphological characteristics of the modified epoxy resins were studied through infrared spectra(FT-IR) analysis, thermogravimetric(TG) analysis and scanning electron microscopy respectively. It has been found from the IR and TG study that modified epoxy resins have greater thermal stability than epoxy resins, and its thermal stability has been improved by the formation of inter-crosslinked network structure. The modified epoxy resins exhibit heterogeneous morphology and heterogeneity increases with more TEOS feeding, which in turn confirms the formation of inter-crosslinked network structure in modified epoxy resins.展开更多
Self-propagating high-temperature synthesis (SHS) with reduction process was used to fabricate TiB2 powder from TiO2-B2O3-Mg system. The colloidal alumina-bonded TiB2 paste was prepared and coated on the cathode carbo...Self-propagating high-temperature synthesis (SHS) with reduction process was used to fabricate TiB2 powder from TiO2-B2O3-Mg system. The colloidal alumina-bonded TiB2 paste was prepared and coated on the cathode carbon blocks. Various properties of the baked paste such as the corrosive resistance, thermal expansion and wettability were tested. Experimental results showed that the colloidal alumina-bonded TiB2 coating could be well wetted by liquid aluminum; and the thermal expansion coefficient of the coated material was 5.8x10(-6) degreesC(-1) at 20-1000 degreesC, which was close to that of the traditional anthracite block cathode (4x10(-6) degreesC(-1)); the electrical resistivity was 8 mu Omega (.)m at 900 degreesC when the content of alumina in the coated material was about 9% in mass fraction. In addition, some other good results such as sodium resistance were also reported.展开更多
It was observed that the p-aminobenzoic acid(PABA)molecules adsorbed on A92CO3 colloids exhibited strong SERS effect,the enhancement factor is estimated at 10~7—10~8 The mechanism of SERS effect on PABA adsorbed on t...It was observed that the p-aminobenzoic acid(PABA)molecules adsorbed on A92CO3 colloids exhibited strong SERS effect,the enhancement factor is estimated at 10~7—10~8 The mechanism of SERS effect on PABA adsorbed on the colloids was discussed.展开更多
Nanoparticles have been widely used in polymer gel systems in recent years to improve gelation performance under high-temperature reservoir conditions. However, different types of nanoparticles have different effects ...Nanoparticles have been widely used in polymer gel systems in recent years to improve gelation performance under high-temperature reservoir conditions. However, different types of nanoparticles have different effects on their gelation performance, which has been little researched. In this study, the high-temperature gelation performance, chemical structure, and microstructure of polymer gels prepared from two nanomaterials (i.e., nano-SiO_(2) and nano-TiO_(2)) were measured. The conventional HPAM/PEI polymer gel system was employed as the control sample. Results showed that the addition of nano-TiO_(2) could significantly enhance the gel strength of HPAM/PEI gel at 80 ℃. The gel strength of the enhanced HPAM/PEI gel with 0.1 wt% nano-TiO_(2) could reach grade I. The system also had excellent high-temperature stability at 150 ℃. The enhanced HPAM/PEI gel with 0.02 wt% nano-TiO_(2) reached the maximum gel strength at 150 ℃ with a storage modulus (G′) of 15 Pa, which can meet the need for efficient plugging. However, the nano-SiO_(2) enhanced HPAM/PEI polymer gel system showed weaker gel strength than that with nano-TiO_(2) at both 80 and 150 ℃ with G′ lower than 5 Pa. Microstructures showed that the nano-TiO_(2) enhanced HPAM/PEI gel had denser three-dimensional (3D) mesh structures, which makes the nano-TiO_(2) enhanced HPAM/PEI gel more firmly bound to water. The FT-IR results also confirmed that the chemical structure of the nano-TiO_(2) enhanced HPAM/PEI gel was more thermally stable than nano-SiO_(2) since there was a large amount of –OH groups on the structure surface. Therefore, nano-TiO_(2) was more suitable as the reinforcing material for HPAM/PEI gels for high-temperature petroleum reservoir conformance improvement.展开更多
基金funded by National Natural Science Foundation of China (grant number 42207083)the project of SINOREC (No.322052)
文摘In this study,to meet the stringent requirements on the hydrophobicity of nano-SiO_(2)particles for use in depressurization and enhanced injection operations in high-temperature and high-salinity oil reservoirs,secondary chemical grafting modification of nano-SiO_(2)is performed using a silane coupling agent to prepare superhydrophobic nano-SiO_(2) particles.Using these superhydrophobic nano-SiO_(2)particles as the core agent,and liquid paraffin or diesel as the dispersion medium,a uniform dispersion of nano-SiO_(2)particles is achieved under high-speed stirring,and a chemically enhanced water injection system with colloidal stability that can be maintained for more than 60 d is successfully developed.Using this system,a field test of depressurization and enhanced injection is carried out on six wells in an oilfield,and the daily oil production level is increased by 11 t.The cumulative increased water injection is 58784 m^(3),the effective rate of the measures was 100%,and the average validity period is 661 d.
文摘Nano-SiO_2 with high activity and mesopores was prepared through sol-gel synthesis followed by low-temperatureheat treatment and ball milling firstly in our experiments. TEM was performed to measure particle sizes. Nitrogenadsorption experiments were carried out to estimate specific surface area, porous distribution and porous ratio by BETand BJH methods. The content of Si-OH in SiO_2 surface was calculated by analysis of the results of hydrogen-oxygencontent mensuration (HOCM). As a result, appropriate heat treatment system and ball milling time are important topreparation for nano-SiO_2 with high activity and mesopores, which are 5~50 nm particles, 5~6 nm average aperture,85%~93% porous ratio, and 51%~55% Si-OH content in surface. Nano-SiO_2 with that structure has high surfaceenergy and activity. This process, which has simple facilities and operation rules, is a new way of preparation fornano-SiO_2 with high activity and mesopores.
文摘A novel method of ultra-trace Cd(Ⅱ) preconcentration with nanometer-size TiO2 colloid and determination by graphite furnace atomic adsorption spectrometry(GFAAS) with slurry sampling was first advanced in this paper. The adsorption efficiency of nanometer-size TiO2 colloid for ultra-trace Cd(Ⅱ) could reach above 96% in a short time when the pH value was between 5 and 6. Other problems were also studied, such as adsorption capacity, nanometer-size TiO2 colloid dosage, effect of coexistent ions. The detection limit(3σ) and the relative standard deviation (R.S.D) of this method were 4.46.103 μg/L and 1.30%(n=7), respectively. The method was successfully applied to the analysis of environmental samples with recoveries between 93.8% and 96.4%.
文摘WO2 and TiO2 colMds were synthesized by the hydrolysis technique and part of the TiO2 colloid was treated by means of the hydrothermal method. The photochromic performances of the resulting materials obtained via combining the WO3 colloid with the treated TiO2 colloid and the non-treated TiO2 colloid, respectively, are very different. The TiO2 colloid without hydrothermal treatment can effectively improve the photochromic performance of the WO3colloid. The TiO2 nanoparticles were investigated in detail by XRD, TEM, surface photovohage spectra(SPS) and field-induced surface photovoltage spectrometry(FISPS). The photochromism mechanism of WO3 colloid is discussed.
基金Supported by the Natural Science Foundation of Hubei Province(2006ABA236)
文摘A new absorbent of nanometer-size TiO2 colloid for Cu(Ⅱ ) was studied in this work. The adsorption rate could reach above 99% when the pH values were at the range of 5-6. The adsorption balance time, adsorption capacities, and the eluent were investigated. A novel method of trace Cu( Ⅱ ) preconcentration and separation with nanometer-size titanium dioxide colloid and determination by flame atomic absorption spectrometry (FAAS) was advanced. The detection limit (3a) of the method was 1.15 μg · L^-1, and the relative standard deviation (R.S.D) was 1.53% (n=6). Environmental sample experiments were also conducted to test the feasibility of the method, and it came out that the recovery rates were between 95.9% and 97.8%.
文摘Both green and residual bending strength of the dip-coat layer composed of ZrO2 (CaO) powder and colloi-dal zirconiz sol binder are sutdied and the effects of process factrs on the strength of dip-coat layer are interpreted,using the results of TG-DTA ,TMA and SEM analyses of the fracture morphology of the coating layer and following the strength theory for porous body.
文摘The present status and development trends of nano-composite coatings were briefly introduced. The nano-SiO2 was dispersed into crylic acid resin by ultrasonic wave and high-energy ball milling, the influence of nano-SiO2 on shielding property of coatings was investigated. Relation between particle size distribution of original nano-SiO2 and its dispersal in water and alcohol after treatment were analyzed, respectively. The ultraviolet permeation rate of coatings filled with nano-SiO2 was detected by ultraviolet spectral photometer. And the particle size distribution of coatings was examined by TEM. The results show that particle size distribution is comparative convergence and smaller one order of magnitude after dispersal treatment. The size of most nano-SiO2 in coatings is smaller than 100nm, which indicates that the amount of nano-SiO2 in the resin is 20% (solid content of resin), the permeation rate of ultraviolet of composite coatings decreases to 20%. The research of its excellent ultraviolet shielding property mechanism indicates minor size and high surface energy of nano-SiO2 can produce different absorption, reflection and scatter actions to different wavelengths.
基金supported by the National Key Research and Development Program of China(Nos.2019YFD1101204 and 2019YFD1101203)the National Natural Science Foundation of China(Nos.31870547 and 31901251)+3 种基金the Project funded by China Postdoctoral Science Foundation(No.2019M652919)the Research and Development Program in Key Areas of Guangdong Province(No.2020B020216002)the Project of Guangzhou Municipal Key Laboratory of Woody Biomass Functional New Materials(No.201905010005)the Project of Key Disciplines of Forestry Engineering of Bureau of Education of Guangzhou Municipality.
文摘The mechanical properties of wood flour/high-density polyethylene composites(WPC)were improved by adding a small amount of nano-SiO_(2)to obtain a network-structured WPC with a continuous honeycomb-like nano-SiO_(2)network.The wood flour was modified with a fire retardant(a mixture of sodium octabonate and amidine urea phosphate)to improve its fire retardancy.The flexural properties,creep resistance,thermal expansion,and fire retardancy of the WPC were compared to a control(WPCCTRL)without nano-SiO_(2)or fire retardant.The flexural strength and modulus of the WPC containing only 0.55 wt.%nano-SiO_(2)were 6.6%and 9.1%higher than the control,respectively,while the creep strain and thermal expansion rate at 90°C were 33.8%and 13.6%lower,respectively.The cone calorimetry tests revealed that the nano-SiO_(2)network physically shielded the WPC,giving it lower heat release and smoke production rates.The thermal expansion was further decreased by incorporating fire retardants into the WPC,which showed the lowest total heat release and total smoke production and the highest mass retention.This study demonstrates a facile procedure for producing WPC with desired performances by forming a continuous honeycomb-like network by adding a small amount of nanoparticles.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61741505 and 61865002)the Guizhou Provincial Science and Technology Support Plan,China(Grant No QKHZ [2017]2887)+3 种基金the Guiding Local Science and Technology Development Plan of the Central Government of China(Grant No.QKZYD [2017]4004)the Guizhou Province Education and Teaching Reform for Graduate Student(Grant No.QJYH-JG [2016]15)the Guizhou University Introduces Talent Projects,China(Grant No.2016002)the Talents of Guizhou Municipal Science and Technology Cooperation Platform,China(Grant No.[2018]5781)
文摘We present a self-assembly method to prepare array nano-wires of colloidal CdSe quantum dots on a substrate of porous Al2 O3 film modified by gold nanoparticles. The photoluminescence(PL) spectra of nanowires are in situ measured by using a scanning near-field optical microscopy(SNOM) probe tip with 100-nm aperture on the scanning near-field optical microscope. The results show that the binding sites from the edge of porous Al2 O3 nanopores are combined with the carboxyl of CdSe quantum dots’ surface to form an array of CdSe nanowires in the process of losing background solvent because of the gold nanoparticles filling the nano-holes of porous Al2 O3 film. Compared with the area of nonself-assembled nano-wire, the fluorescence on the Al2 O3/Au/CdSe interface is significantly enhanced in the self-assembly nano-wire regions due to the electron transfer conductor effect of the gold nanoparticles’ surface. In addition, its full width at half maximum(FWHM) is also obviously widened. The method of enhancing fluorescence and energy transfer can widely be applied to photodetector, photocatalysis, optical display, optical sensing, and biomedical imaging, and so on.
文摘A kind of modified epoxy resins was obtained by condensation of epoxy resin with silicic acid tetraethyl ester(TEOS) and nano-SiO2. The reactions were performed with hydrochloric acid as a catalyst at 63 ℃. The structure, thermal stability and morphological characteristics of the modified epoxy resins were studied through infrared spectra(FT-IR) analysis, thermogravimetric(TG) analysis and scanning electron microscopy respectively. It has been found from the IR and TG study that modified epoxy resins have greater thermal stability than epoxy resins, and its thermal stability has been improved by the formation of inter-crosslinked network structure. The modified epoxy resins exhibit heterogeneous morphology and heterogeneity increases with more TEOS feeding, which in turn confirms the formation of inter-crosslinked network structure in modified epoxy resins.
文摘Self-propagating high-temperature synthesis (SHS) with reduction process was used to fabricate TiB2 powder from TiO2-B2O3-Mg system. The colloidal alumina-bonded TiB2 paste was prepared and coated on the cathode carbon blocks. Various properties of the baked paste such as the corrosive resistance, thermal expansion and wettability were tested. Experimental results showed that the colloidal alumina-bonded TiB2 coating could be well wetted by liquid aluminum; and the thermal expansion coefficient of the coated material was 5.8x10(-6) degreesC(-1) at 20-1000 degreesC, which was close to that of the traditional anthracite block cathode (4x10(-6) degreesC(-1)); the electrical resistivity was 8 mu Omega (.)m at 900 degreesC when the content of alumina in the coated material was about 9% in mass fraction. In addition, some other good results such as sodium resistance were also reported.
文摘It was observed that the p-aminobenzoic acid(PABA)molecules adsorbed on A92CO3 colloids exhibited strong SERS effect,the enhancement factor is estimated at 10~7—10~8 The mechanism of SERS effect on PABA adsorbed on the colloids was discussed.
基金supported by the Natural Science Foundation of Xinjiang Uygur Autonomous Region(No.2022D01A250)the CNPC Strategic Cooperation Science and Technology Project(ZLZX2020-01-04-04).
文摘Nanoparticles have been widely used in polymer gel systems in recent years to improve gelation performance under high-temperature reservoir conditions. However, different types of nanoparticles have different effects on their gelation performance, which has been little researched. In this study, the high-temperature gelation performance, chemical structure, and microstructure of polymer gels prepared from two nanomaterials (i.e., nano-SiO_(2) and nano-TiO_(2)) were measured. The conventional HPAM/PEI polymer gel system was employed as the control sample. Results showed that the addition of nano-TiO_(2) could significantly enhance the gel strength of HPAM/PEI gel at 80 ℃. The gel strength of the enhanced HPAM/PEI gel with 0.1 wt% nano-TiO_(2) could reach grade I. The system also had excellent high-temperature stability at 150 ℃. The enhanced HPAM/PEI gel with 0.02 wt% nano-TiO_(2) reached the maximum gel strength at 150 ℃ with a storage modulus (G′) of 15 Pa, which can meet the need for efficient plugging. However, the nano-SiO_(2) enhanced HPAM/PEI polymer gel system showed weaker gel strength than that with nano-TiO_(2) at both 80 and 150 ℃ with G′ lower than 5 Pa. Microstructures showed that the nano-TiO_(2) enhanced HPAM/PEI gel had denser three-dimensional (3D) mesh structures, which makes the nano-TiO_(2) enhanced HPAM/PEI gel more firmly bound to water. The FT-IR results also confirmed that the chemical structure of the nano-TiO_(2) enhanced HPAM/PEI gel was more thermally stable than nano-SiO_(2) since there was a large amount of –OH groups on the structure surface. Therefore, nano-TiO_(2) was more suitable as the reinforcing material for HPAM/PEI gels for high-temperature petroleum reservoir conformance improvement.