Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)...Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)FeO_(3-δ) perovskites as highly-active catalysts for LT-SOFCs.Sm doping can significantly enhance the electrocata lytic activity and chemical stability of cathode.At 600℃,Bi_(0.675)Sm_(0.025)Sr_(0.3)FeO_(3-δ)(BSSF25) cathode has been found to be the optimum composition with a polarization resistance of 0.098 Ω cm^2,which is only around 22.8% of Bi_(0.7)Sr_(0.3)FeO_(3-δ)(BSF).A full cell utilizing BSSF25 displays an exceptional output density of 790 mW cm^(-2),which can operate continuously over100 h without obvious degradation.The remarkable electrochemical performance observed can be attributed to the improved O_(2) transport kinetics,superior surface oxygen adsorption capacity,as well as O_(2)p band centers in close proximity to the Fermi level.Moreover,larger average bonding energy(ABE) and the presence of highly acidic Bi,Sm,and Fe ions restrict the adsorption of CO_(2) on the cathode surface,resulting in excellent CO_(2) resistivity.This work provides valuable guidance for systematic design of efficient and durable catalysts for LT-SOFCs.展开更多
Nanoparticles anchored on the perovskite surface have gained considerable attention for their wide-ranging applications in heterogeneous catalysis and energy conversion due to their robust and integrated structural co...Nanoparticles anchored on the perovskite surface have gained considerable attention for their wide-ranging applications in heterogeneous catalysis and energy conversion due to their robust and integrated structural configuration.Herein,we employ controlled Co doping to effectively enhance the nanoparticle exsolution process in layered perovskite ferrites materials.CoFe alloy nanoparticles with ultra-high-density are exsolved on the(PrBa)_(0.95)(Fe_(0.8)Co_(0.1)Nb_(0.1))2O_(5+δ)(PBFCN_(0.1))surface under reducing atmosphere,providing significant amounts of reaction sites and good durability for hydrocarbon catalysis.Under a reducing atmosphere,cobalt facilitates the reduction of iron cations within PBFCN_(0.1),leading to the formation of CoFe alloy nanoparticles.This formation is accompanied by a cation exchange process,wherein,with the increase in temperature,partial cobalt ions are substituted by iron.Meanwhile,Co doping significantly enhance the electrical conductivity due to the stronger covalency of the Cosingle bondO bond compared with Fesingle bondO bond.A single cell with the configuration of PBFCN_(0.1)-Sm_(0.2)Ce_(0.8)O_(1.9)(SDC)|SDC|Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3−δ)(BSCF)-SDC achieves an extremely low polarization resistance of 0.0163Ωcm^(2)and a high peak power density of 740 mW cm^(−2)at 800℃.The cell also shows stable operation for 120 h in H_(2)with a constant current density of 285 mA cm^(−2).Furthermore,employing wet C_(2)H_(6)as fuel,the cell demonstrates remarkable performance,achieving peak power densities of 455 mW cm^(−2)at 800℃and 320 mW cm^(−2)at 750℃,marking improvements of 36%and 70%over the cell with(PrBa)_(0.95)(Fe_(0.9)Nb_(0.1))_(2)O_(5+δ)(PBFN)-SDC at these respective temperatures.This discovery emphasizes how temperature influences alloy nanoparticles exsolution within doped layered perovskite ferrites materials,paving the way for the development of high-performance ceramic fuel cell anodes.展开更多
In response to the shortcomings of cobalt-rich cathodes, iron-based perovskite oxides appear as promising alternatives for solid oxide fuel cells (SOFCs). However, their inferior electrochemical performance at reduced...In response to the shortcomings of cobalt-rich cathodes, iron-based perovskite oxides appear as promising alternatives for solid oxide fuel cells (SOFCs). However, their inferior electrochemical performance at reduced temperatures (<700 ℃) becomes a major bottleneck for future progress. Here, a novel cobalt-free perovskite Ba_(0.75)Sr_(0.25)Fe_(0.875)Ga_(0.125)O_(3−δ) (BSFG) is developed as an efficient oxygen reduction electrode for SOFCs, featuring cubic-symmetry structure, large oxygen vacancy concentration and fast oxygen transport. Benefiting from these merits, cells incorporated with BSFG achieve exceptionally high electrochemical performance, as evidenced by a low polarization area-specific resistance of 0.074 Ω cm^(2) and a high peak power density of 1145 mW cm^(−2) at 600 ℃. Meanwhile, a robust short-term performance stability of BSFG cathode can be ascribed to the stable crystalline structure and favorable thermal expansion behavior. First-principles computations are also conducted to understanding the superior activity and durability toward oxygen reduction reaction. These pave the way for rationally developing highly active and robust cobalt-free perovskite-type cathode materials for reduced-temperature SOFCs.展开更多
The unique characteristics of nanofibers in rational electrode design enable effec-tive utilization and maximizing material properties for achieving highly efficient and sustainable CO_(2) reduction reactions( CO_(2)R...The unique characteristics of nanofibers in rational electrode design enable effec-tive utilization and maximizing material properties for achieving highly efficient and sustainable CO_(2) reduction reactions( CO_(2)RRs)in solid oxide elec-trolysis cells(SOECs).However,practical appli-cation of nanofiber-based electrodes faces chal-lenges in establishing sufficient interfacial contact and adhesion with the dense electrolyte.To tackle this challenge,a novel hybrid nanofiber electrode,La_(0.6)Sr_(0.4)Co_(0.15)Fe_(0.8)Pd_(0.05)O_(3-δ)(H-LSCFP),is developed by strategically incorporating low aspect ratio crushed LSCFP nanofibers into the excess porous interspace of a high aspect ratio LSCFP nanofiber framework synthesized via electrospinning technique.After consecutive treatment in 100% H_(2) and CO_(2) at 700°C,LSCFP nanofibers form a perovskite phase with in situ exsolved Co metal nanocatalysts and a high concentration of oxygen species on the surface,enhancing CO_(2) adsorption.The SOEC with the H-LSCFP electrode yielded an outstanding current density of 2.2 A cm^(-2) in CO_(2) at 800°C and 1.5 V,setting a new benchmark among reported nanofiber-based electrodes.Digital twinning of the H-LSCFP reveals improved contact adhesion and increased reaction sites for CO_(2)RR.The present work demonstrates a highly catalytically active and robust nanofiber-based fuel electrode with a hybrid structure,paving the way for further advancements and nanofiber applications in CO_(2)-SOECs.展开更多
The present work explores the application of La_(0.5)Sr_(0.5)Co_(0.95)Nb_(0.05)O_(3-δ)(LSCNO)perovskite as electrode material for the symmetric solid oxide fuel cell.Symmetric solid oxide fuel cells of thin-film LSCN...The present work explores the application of La_(0.5)Sr_(0.5)Co_(0.95)Nb_(0.05)O_(3-δ)(LSCNO)perovskite as electrode material for the symmetric solid oxide fuel cell.Symmetric solid oxide fuel cells of thin-film LSCNO electrodes were prepared to study the oxygen reduction reaction at intermediate temperature.The Rietveld refinement of syn-thesized material shows a hexagonal structure with the R-3c space group of the prepared perovskite material.Lattice parameter and fractional coordinates were utilized to calculate the oxygen ion diffusion coefficient for molecular dynamic simulation.At 973 K,the oxygen ion diffusion of LSCNO was 1.407×10^(-8)cm^(2)s^(-1) higher by order of one magnitude than that of the La_(0.5)Sr_(0.5)Co_(0.95)Nb_(0.05)O_(3-δ)(7.751×10^(-9)cm^(2)^(-1)).The results suggest that the Nb doping provide the structural stability which improves oxygen anion diffusion.The enhanced structural stability was analysed by the thermal expansion coefficient calculated experimentally and from molecular dynamics simulations.Furthermore,the density functional theory calculation revealed the role of Nb dopant for oxygen vacancy formation energy at Sr-0 and La-O planes is lower than the undoped structure.To understand the rate-limiting process for sluggish oxygen diffusion kinetics,80 nm and 40 nm thin films were fabricated using radio frequency magnetron sputtering on gadolinium doped ceria electrolyte substrate.The impedance was observed to increase with an increasing thickness,suggesting the bulk diffusion as a rate-limiting step for oxygen ion diffu-sion.The electrochemical performance was analysed for the thin-flm symmetric solid oxide fuel cell,which achieved a peak power density of 390 mW cm^(-2) at 1.02 V in the presence of H_(2) fuel on the anode side and air on the cathode side.展开更多
Feasible construction of cathode materials with highly dispersed active sites can extend the tri‐ple‐phase boundaries,and therefore leading to enhanced electrode kinetics for CO_(2) electrolysis in solid oxide elect...Feasible construction of cathode materials with highly dispersed active sites can extend the tri‐ple‐phase boundaries,and therefore leading to enhanced electrode kinetics for CO_(2) electrolysis in solid oxide electrolysis cell(SOEC).Herein,highly dispersed nickel species with low loading(1.0 wt%)were trapped within the La_(0.8)Sr_(0.2)FeO_(3)–δ‐Ce_(0.8)Sm_(0.2)O_(2)–δvia a facial mechanical milling ap‐proach,which demonstrated excellent CO_(2) electrolysis performance.The highly dispersed nickel species can significantly alter the electronic structures of the LSF‐SDC without affecting its porous network and facilitate oxygen vacancy formation,thus greatly promote the CO_(2) electrolysis perfor‐mance.The highest current density of 1.53 A·cm^(-2) could be achieved when operated under 800℃ at 1.6 V,which is about 91%higher than the LSF‐SDC counterpart.展开更多
Batteries,fuel cells,and supercapacitors are electrochemical devices already on the market and still need a boost in kinetics to match the high energy density demand of applications.Perovskites have attracted the scie...Batteries,fuel cells,and supercapacitors are electrochemical devices already on the market and still need a boost in kinetics to match the high energy density demand of applications.Perovskites have attracted the scientific community's attention in the last decade due to their electrocatalytic activity,chemical and structural properties,tunability,low cost,and scalability.Efforts have been made to understand the active sites and the operational mechanisms in perovskite oxides to shape them as an electrocatalyst in advanced energy devices.Understanding the role of perovskites is the key to engineering more controlled and efficient electrocatalysts via chemical synthesis,and there is still much to do.This review highlights the use of perovskites in different energy storage and conversion systems.The A,B,and A&B doping-site effects are analyzed to understand the opportunities and challenges related to this class of materials.In addition,the synthesis methods and the properties related to the doping site are described and summarized.展开更多
The growth of electrochemically inert segregation layers on the surface of solid oxide fuel cell cathodes has become a bottleneck restricting the development of perovskite-structured oxygen reduction catalysts.Here,we...The growth of electrochemically inert segregation layers on the surface of solid oxide fuel cell cathodes has become a bottleneck restricting the development of perovskite-structured oxygen reduction catalysts.Here,we report a new discovery in which enriched Ba and Fe ions on the near-surface of Nd_(1/2)Ba_(1/2)Co_(1/3)Fe_(1/3)Mn_(1/3)O_(3-δ)spontaneously agglomerate into dispersed Ba_(5)Fe_(2)O_(8) nanoparticles and maintain a highly active and durable perovskite structure on the surface.This unique surface selfcleaning phenomenon is related to the low average potential energy of Ba_(5)Fe_(2)O_(8),which is grown on the near-surface layer.The electrochemically inert Ba_(5)Fe_(2)O_(8) segregation layer on the near-surface of the perovskite catalyst achieves self-cleaning by regulating the formation energy of enriched metal oxides.This self-cleaned perovskite surface exhibits an ultrafast oxygen exchange rate,high catalytic activity for the oxygen reduction reaction,and good adaptability to the actual working conditions of solid oxide fuel cell stacks.This study paves a new way for overcoming the stubborn problem of perovskite catalyst surface deactivation and enriches the scientific knowledge of surface catalysis.展开更多
To explore highly active and thermomechanical stable air electrodes for intermediate-temperature solid oxide fuel cells(ITSOFCs),10mol%Ta5+doped in the B site of strontium ferrite perovskite oxide(SrTa_(0.1)Fe_(0.9)O_...To explore highly active and thermomechanical stable air electrodes for intermediate-temperature solid oxide fuel cells(ITSOFCs),10mol%Ta5+doped in the B site of strontium ferrite perovskite oxide(SrTa_(0.1)Fe_(0.9)O_(3-δ),STF)is investigated and optimized.The effects of Ta^(5+)doping on structure,transition metal reduction,oxygen nonstoichiometry,thermal expansion,and electrical performance are evaluated systematically.Via 10mol%Ta^(5+)doping,the thermal expansion coefficient(TEC)decreased from 34.1×10^(-6)(SrFeO_(3-δ))to 14.6×10^(-6) K^(-1)(STF),which is near the TEC of electrolyte(13.3×10^(-6) K^(-1) for Sm_(0.2)Ce_(0.8)O_(1.9),SDC),indicates excellent thermomechanical compatibility.At 550-750℃,STF shows superior oxygen vacancy concentrations(0.262 to 0.331),which is critical in the oxygen-reduction reaction(ORR).Oxygen temperature-programmed desorption(O_(2)-TPD)indicated the thermal reduction onset temperature of iron ion is around 420℃,which matched well with the inflection points on the thermos-gravimetric analysis and electrical conductivity curves.At 600℃,the STF electrode shows area-specific resistance(ASR)of 0.152Ω·cm^(2) and peak power density(PPD)of 749 mW·cm^(-2).ORR activity of STF was further improved by introducing 30wt%Sm_(0.2)Ce_(0.8)O_(1.9)(SDC)powder,STF+SDC composite cathode achieving outstanding ASR value of 0.115Ω·cm2 at 600℃,even comparable with benchmark cobalt-containing cathode,Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3-δ)(BSCF).Distribution of relaxation time(DRT)analysis revealed that the oxygen surface exchange and bulk diffusion were improved by forming a composite cathode.At 650℃,STF+SDC composite cathode achieving an outstanding PPD of 1117 mW·cm^(-2).The excellent results suggest that STF and STF+SDC are promising air electrodes for IT-SOFCs.展开更多
Solid oxide fuel cells(SOFCs)have attracted a great deal of interest because they have the highest efficiency without using any noble metal as catalysts among all the fuel cell technologies.However,traditional SOFCs s...Solid oxide fuel cells(SOFCs)have attracted a great deal of interest because they have the highest efficiency without using any noble metal as catalysts among all the fuel cell technologies.However,traditional SOFCs suffer from having a higher volume,current leakage,complex connections,and difficulty in gas sealing.To solve these problems,Rolls-Royce has fabricated a simple design by stacking cells in series on an insulating porous support,resulting in the tubular segmented-in-series solid oxide fuel cells(SIS-SOFCs),which achieved higher output voltage.This work systematically reviews recent advances in the structures,preparation methods,perform-ances,and stability of tubular SIS-SOFCs in experimental and numerical studies.Finally,the challenges and future development of tubular SIS-SOFCs are also discussed.The findings of this work can help guide the direction and inspire innovation of future development in this field.展开更多
The sluggish kinetics of the electrochemical oxygen reduction reaction(ORR)in intermediatetemperature solid oxide fuel cells(IT-SOFCs)greatly limits the overall cell performance.In this study,an efficient and durable ...The sluggish kinetics of the electrochemical oxygen reduction reaction(ORR)in intermediatetemperature solid oxide fuel cells(IT-SOFCs)greatly limits the overall cell performance.In this study,an efficient and durable cathode material for IT-SOFCs is designed based on density functional theory(DFT)calculations by co-doping with Nb and Ta the B-site of the SrFeO_(3-δ)perovskite oxide.The DFT calculations suggest that Nb/Ta co-doping can regulate the energy band of the parent SrFeO_(3-δ)and help electron transfer.In symmetrical cells,such cathode with a SrFe_(0.8)Nb_(0.1)Ta_(0.1)O_(3-δ)(SFNT)detailed formula achieves a low cathode polarization resistance of 0.147Ωcm^(2) at 650℃.Electron spin resonance(ESR)and X-ray photoelectron spectroscopy(XPS)analysis confirm that the co-doping of Nb/Ta in SrFeO_(3-δ)B-site increases the balanced concentration of oxygen vacancies,enhancing the electrochemical performance when compared to 20 mol%Nb single-doped perovskite oxide.The cathode button cell with NiSDC|SDC|SFNT configuration achieves an outstanding peak power density of 1.3 W cm^(-2)at 650℃.Moreover,the button cell shows durability for 110 h under 0.65 V at 600℃ using wet H_(2) as fuel.展开更多
It is normally difficult to prepare nano-sized Ba0.5Sr0.5Co0.8Fe0.2O3-δ(BSCF) oxide at high temperature due to its high surface activity. The complexing process, which has successfully applied in the synthesis of n...It is normally difficult to prepare nano-sized Ba0.5Sr0.5Co0.8Fe0.2O3-δ(BSCF) oxide at high temperature due to its high surface activity. The complexing process, which has successfully applied in the synthesis of nano Sm0.15Ce0.85I1.925 with crystallite size down to 5 nml, just resulted in a coarse BSCF with crystaUite size of 41.9 nm at 900℃. We applied a novel process by simply modifying the solid precursor from the complexing process with concentrated nitric acid treatment. The obtained BSCF powder had a crystaUite size of -25 nm even calcined at 1000℃. The small crystaUite size is extremely promising to enhance the electrochemical performance of cathode for solid oxide fuel cell dramatically.展开更多
For present solid oxide fuel cells(SOFCs),rapid performance degradation is observed in the initial aging process,and the dis-cussion of the degradation mechanism necessitates quantitative analysis.Herein,focused ion b...For present solid oxide fuel cells(SOFCs),rapid performance degradation is observed in the initial aging process,and the dis-cussion of the degradation mechanism necessitates quantitative analysis.Herein,focused ion beam-scanning electron microscopy was em-ployed to characterize and reconstruct the ceramic microstructures of SOFC anodes.The lattice Boltzmann method(LBM)simulation of multiphysical and electrochemical processes in the reconstructed models was performed.Two samples collected from industrial-size cells were characterized,including a reduced reference cell and a cell with an initial aging process.Statistical parameters of the reconstructed microstructures revealed a significant decrease in the active triple-phase boundary and Ni connectivity in the aged cell compared with the reference cell.The LBM simulation revealed that activity degradation is dominant compared with microstructural degradation during the initial aging process,and the electrochemical reactions spread to the support layer in the aged cell.The microstructural and activity de-gradations are attributed to Ni migration and coarsening.展开更多
While double perovskites of PrBaCo_(2)O_(6)(PBC)have been extensively developed as the cathodes for proton-conducting solid oxide fuel cells(H-SOFCs),the effects of Sr-or Ca-doping at the A site on the activity and st...While double perovskites of PrBaCo_(2)O_(6)(PBC)have been extensively developed as the cathodes for proton-conducting solid oxide fuel cells(H-SOFCs),the effects of Sr-or Ca-doping at the A site on the activity and stability of the oxygen reduction reaction are yet to be fully studied.Here,the effect of A-site doping on the oxygen reduction reaction activity and stability has been studied by evaluating the performance of both symmetrical and single cells.It is shown that Ca-doped PBC(PrBa_(0.8)Ca_(0.2)Co_(2)O_(6),PBCC)shows a slightly smaller polarization resistance(0.076Ωcm^(2))than that(0.085Ωcm^(2))of Sr-doped PBC(PrBa0.8Sr0.2Co2O6,PBSC)at 700◦C in wet air.Moreover,the degradation rate of PBCC is 0.0003Ωcm^(2)h^(−1)(0.3%h−1)in 100 h,about 1/10 of that of PBSC at 700◦C in wet air.In addition,it is also confirmed that single cells with PBCC cathode show higher peak power density(1.22Wcm^(−2)vs.1.08Wcm^(−2)at 650◦C)and better durability(degradation rate of 0.1%h^(−1)vs.0.13%h^(−1))than those with PBSC cathode.The distribution of relaxation time analyses suggests that the better stability of the PBCC electrode may come from the fast and stable surface oxygen exchange process in the medium frequency range of the electrochemical impedance spectrum.展开更多
Electrochemical conversion of CO_(2)to CO is an economically feasible method for mitigating greenhouse gas emissions.Among various electrochemical approaches,solid oxide electrolysis cells(SOECs)show high potential fo...Electrochemical conversion of CO_(2)to CO is an economically feasible method for mitigating greenhouse gas emissions.Among various electrochemical approaches,solid oxide electrolysis cells(SOECs)show high potential for CO_(2)reduction reaction(CO_(2)-RR)due to their ability to operate at high temperatures,resulting in fast reaction kinetics and increased efficiency.Considering their main energy loss is still associated with the large overpotential at the fuel electrode,the development of the highly efficient and durable cathode for SOECs has been extensively searched after.Here,we propose an A-site doping strategy to enhance the properties of Sr_(2)Fe_(1.5)Mo_(0.5)O_(6−δ)(SFM),which improve its performance as a cathode in SOECs for CO_(2)-RR,demonstrating favorable activity and durability.The structural and physiochemical characterizations,together with DFT calculations,show that the partial replacement of Sr by Bi in the SFM double perovskite not only improves CO_(2) adsorption capability at the catalyst surface but also enhances oxygen ionic conduction inside the bulk oxide,resulting in enhanced CO_(2)electrocatalysis performance in SOECs.Specifically,a La_(0.8)Sr_(0.2)Ga_(0.8)Mg_(0.2)O_(3−δ) (LSGM)electrolyte-supported single cell with the new Bi-doped SFM cathode demonstrates a large current density of 1620 mA cm^(−2) at a cell potential of 1.6 V at 850°C with good operational stability up to 200 h.Bi-doped SFM thus represents a highly promising cathode for ceramic CO_(2)electrolyzers and could accelerate our transition towards a carbon-neutral society.展开更多
The reduced sealing difficulty of tubular solid oxide fuel cells(SOFCs)makes the stacking of tubular cell groups relatively easy,and the thermal stress constraints during stack operation are smaller,which helps the st...The reduced sealing difficulty of tubular solid oxide fuel cells(SOFCs)makes the stacking of tubular cell groups relatively easy,and the thermal stress constraints during stack operation are smaller,which helps the stack to operate stably for a long time.The special design of tubular SOFC structures can completely solve the problem of high-temperature sealing,especially in the design of multiple single-cell series integrated into one tube,where each cell tube is equivalent to a small electric stack,with unique characteristics of high voltage and low current output,which can significantly reduce the ohmic polarization loss of tubular cells.This paper provides an overview of typical tubular SOFC structural designs both domestically and internationally.Based on the geometric structure of tubular SOFCs,they can be divided into bamboo tubes,bamboo flat tubes,single-section tubes,and single-section flat tube structures.Meanwhile,this article provides an overview of commonly used materials and preparation methods for tubular SOFCs,including commonly used materials and preparation methods for support and functional layers,as well as a comparison of commonly used preparation methods for microtubule SOFCs,It introduced the three most important parts of building a fuel cell stack:manifold,current collector,and ceramic adhesive,and also provided a detailed introduction to the power generation systems of different tubular SOFCs,Finally,the development prospects of tubular SOFCs were discussed.展开更多
Compositely doped oxide La0.5Sr0.5CoO2.91 (LSC) was synthesized using solid state reaction and citric acid-nitrate low temperature self-propagating combustion methods. The crystal structure and the particle size mic...Compositely doped oxide La0.5Sr0.5CoO2.91 (LSC) was synthesized using solid state reaction and citric acid-nitrate low temperature self-propagating combustion methods. The crystal structure and the particle size micrograph of LSC powders synthesized by different methods were investigated with XRD and SEM. The experimental results show that the single perovskite phase of LSC can be synthesized by solid state reaction method, but LaSrCoO4 phase appears in LSC powder synthesized by citric acid-nitrate low temperature self-propagating combustion method. The LSC particle by citric acid-nitrate low temperature self- propagating combustion method has smaller size. To analyze the character of cathode material based on Ceo.gGdo.101.95(GDC) electrolyte, two types of cathode wafers were fabricated with the two kinds of LSC and GDC powders at the mass rate of 6:4, respectively. The electrical conductivity of the sintered samples was measured by four probe DC method from 300 to 800 ℃. The cathode with LSC particle by citric acid- nitrate low temperature self-propagating combustion method has higher electrical conductivity. In order to investigate the stability, the two samples were put into the muffle furnace to heat up in air at 800℃for 800 h. To analysis the reason for reduced electrical conductivity, the crystal structure and the particle micrograph of the cathode wafers before and after an exposure were investigated with XRD and SEM. The result shows that new crystal structure appears in both the two kinds of cathode wafers and crystal micrographs change a lot.展开更多
Symmetrical solid oxide cells(SSOCs)are very useful for energy generation and conversion.To fabricate the electrode of SSOC,it is very time-consuming to use the conventional approach.In this work,we design and develop...Symmetrical solid oxide cells(SSOCs)are very useful for energy generation and conversion.To fabricate the electrode of SSOC,it is very time-consuming to use the conventional approach.In this work,we design and develop a novel method,extreme heat treatment(EHT),to rapidly fabricate electrodes for SSOC.We show that by using the EHT method,the electrode can be fabricated in seconds(the fastest method to date),benefiting from enhanced reaction kinetics.The EHT-fabricated electrode presents a porous structure and good adhesion with the electrolyte.In contrast,tens of hours are needed to prepare the electrode by the conventional approach,and the prepared electrode exhibits a dense structure with a larger particle size due to the lengthy treatment.The EHT-fabricated electrode shows desirable electrochemical performance.Moreover,we show that the electrocatalytic activity of the perovskite electrode can be tuned by the vigorous approach of fast exsolution,deriving from the increased active sites for enhancing the electrochemical reactions.At 900℃,a promising peak power density of 966 mW cm^(-2)is reached.Our work exploits a new territory to fabricate and develop advanced electrodes for SSOCs in a rapid and high-throughput manner.展开更多
A Solid Oxide Fuel Cell(SOFC)is an electrochemical device that converts the chemical energy of a substance into electrical energy through an oxidation-reduction mechanism.The electrochemical reaction of a solid oxide ...A Solid Oxide Fuel Cell(SOFC)is an electrochemical device that converts the chemical energy of a substance into electrical energy through an oxidation-reduction mechanism.The electrochemical reaction of a solid oxide fuel cell(SOFC)generates heat,and this heat can be recovered and put to use in a waste heat recovery system.In addition to preheating the fuel and oxidant,producing steam for industrial use,and heating and cooling enclosed rooms,this waste heat can be used for many more productive uses.The large waste heat produced by SOFCs is a worry that must be managed if they are to be adopted as a viable option in the power generation business.In light of these findings,a novel approach to SOFC waste heat recovery is proposed.The SOFC is combined with a“Thermoelectric Generator and an Alkali Metal Thermoelectric Converter(TG-AMTC)”to transform the excess heat generated by both the SOFC and the TG-AMTC.The proposed TG-AMTC is evaluated using a number of performance indicators including power density,operating temperature,heat recovery rate,exergetic efficiency,energy efficiency,and recovery time.The experimental results state that TG-AMTC has provided an exergetic efficiency,energetic efficiency,and recovery time of 97%,98%,and 23%,respectively.The study proves that the proposed TG-AMTC for SOFC is an efficient method of recovering waste heat.展开更多
Recently,the development and fabrication of electrode component of the solid oxide fuel cell(SOFC)have gained a significant importance,especially after the advent of electrode supported SOFCs.The function of the elect...Recently,the development and fabrication of electrode component of the solid oxide fuel cell(SOFC)have gained a significant importance,especially after the advent of electrode supported SOFCs.The function of the electrode involves the facilitation of fuel gas diffusion,oxidation of the fuel,transport of electrons,and transport of the byproduct of the electrochemical reaction.Impressive progress has been made in the development of alternative electrode materials with mixed conducting properties and a few of the other composite cermets.During the operation of a SOFC,it is necessary to avoid carburization and sulfidation problems.The present review focuses on the various aspects pertaining to a potential electrode material,the double perovskite,as an anode and cathode in the SOFC.More than 150 SOFCs electrode compositions which had been investigated in the literature have been analyzed.An evaluation has been performed in terms of phase,structure,diffraction pattern,electrical conductivity,and power density.Various methods adopted to determine the quality of electrode component have been provided in detail.This review comprises the literature values to suggest possible direction for future research.展开更多
基金supported by the National Natural Science Foundation of China(22279025,21773048)the Natural Science Foundation of Heilongjiang Province(LH2021A013)+1 种基金the Sichuan Science and Technology Program(2021YFSY0022)the Fundamental Research Funds for the Central Universities(2023FRFK06005,HIT.NSRIF202204)。
文摘Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)FeO_(3-δ) perovskites as highly-active catalysts for LT-SOFCs.Sm doping can significantly enhance the electrocata lytic activity and chemical stability of cathode.At 600℃,Bi_(0.675)Sm_(0.025)Sr_(0.3)FeO_(3-δ)(BSSF25) cathode has been found to be the optimum composition with a polarization resistance of 0.098 Ω cm^2,which is only around 22.8% of Bi_(0.7)Sr_(0.3)FeO_(3-δ)(BSF).A full cell utilizing BSSF25 displays an exceptional output density of 790 mW cm^(-2),which can operate continuously over100 h without obvious degradation.The remarkable electrochemical performance observed can be attributed to the improved O_(2) transport kinetics,superior surface oxygen adsorption capacity,as well as O_(2)p band centers in close proximity to the Fermi level.Moreover,larger average bonding energy(ABE) and the presence of highly acidic Bi,Sm,and Fe ions restrict the adsorption of CO_(2) on the cathode surface,resulting in excellent CO_(2) resistivity.This work provides valuable guidance for systematic design of efficient and durable catalysts for LT-SOFCs.
基金supported by National Natural Science Foundation of China Project (Grant No. 52374133, 52262034)the Guangdong Basic and Applied Basic Research Committee Foundation (Grant No. KCXST20221021111601003)Shenzhen Science and Technology Innovation Commission Foundation (Grant No. KCXST20221021111601003)
文摘Nanoparticles anchored on the perovskite surface have gained considerable attention for their wide-ranging applications in heterogeneous catalysis and energy conversion due to their robust and integrated structural configuration.Herein,we employ controlled Co doping to effectively enhance the nanoparticle exsolution process in layered perovskite ferrites materials.CoFe alloy nanoparticles with ultra-high-density are exsolved on the(PrBa)_(0.95)(Fe_(0.8)Co_(0.1)Nb_(0.1))2O_(5+δ)(PBFCN_(0.1))surface under reducing atmosphere,providing significant amounts of reaction sites and good durability for hydrocarbon catalysis.Under a reducing atmosphere,cobalt facilitates the reduction of iron cations within PBFCN_(0.1),leading to the formation of CoFe alloy nanoparticles.This formation is accompanied by a cation exchange process,wherein,with the increase in temperature,partial cobalt ions are substituted by iron.Meanwhile,Co doping significantly enhance the electrical conductivity due to the stronger covalency of the Cosingle bondO bond compared with Fesingle bondO bond.A single cell with the configuration of PBFCN_(0.1)-Sm_(0.2)Ce_(0.8)O_(1.9)(SDC)|SDC|Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3−δ)(BSCF)-SDC achieves an extremely low polarization resistance of 0.0163Ωcm^(2)and a high peak power density of 740 mW cm^(−2)at 800℃.The cell also shows stable operation for 120 h in H_(2)with a constant current density of 285 mA cm^(−2).Furthermore,employing wet C_(2)H_(6)as fuel,the cell demonstrates remarkable performance,achieving peak power densities of 455 mW cm^(−2)at 800℃and 320 mW cm^(−2)at 750℃,marking improvements of 36%and 70%over the cell with(PrBa)_(0.95)(Fe_(0.9)Nb_(0.1))_(2)O_(5+δ)(PBFN)-SDC at these respective temperatures.This discovery emphasizes how temperature influences alloy nanoparticles exsolution within doped layered perovskite ferrites materials,paving the way for the development of high-performance ceramic fuel cell anodes.
基金This work was financially supported by a startup R&D funding from One-Hundred Young Talents Program of Guangdong University of Technology,China(No.220413180)a Foundation for Youth Innovative Talents in Higher Education of Guangdong Province,China(No.2018KQNCX060)+1 种基金Joint Funds of Basic and Applied Basic Research Foundation of Guangdong Province,China(No.2019A1515110322)grants from Research Grant Council,University Grants Committee,Hong Kong SAR(Nos.PolyU 152214/17E and PolyU 152064/18E).
文摘In response to the shortcomings of cobalt-rich cathodes, iron-based perovskite oxides appear as promising alternatives for solid oxide fuel cells (SOFCs). However, their inferior electrochemical performance at reduced temperatures (<700 ℃) becomes a major bottleneck for future progress. Here, a novel cobalt-free perovskite Ba_(0.75)Sr_(0.25)Fe_(0.875)Ga_(0.125)O_(3−δ) (BSFG) is developed as an efficient oxygen reduction electrode for SOFCs, featuring cubic-symmetry structure, large oxygen vacancy concentration and fast oxygen transport. Benefiting from these merits, cells incorporated with BSFG achieve exceptionally high electrochemical performance, as evidenced by a low polarization area-specific resistance of 0.074 Ω cm^(2) and a high peak power density of 1145 mW cm^(−2) at 600 ℃. Meanwhile, a robust short-term performance stability of BSFG cathode can be ascribed to the stable crystalline structure and favorable thermal expansion behavior. First-principles computations are also conducted to understanding the superior activity and durability toward oxygen reduction reaction. These pave the way for rationally developing highly active and robust cobalt-free perovskite-type cathode materials for reduced-temperature SOFCs.
基金This work was supported by the National Research Foundation of Korea(NRF)grant funded by the Korean Government(MSIT)(2019M3E6A1103944,2020R1A2C2010690).
文摘The unique characteristics of nanofibers in rational electrode design enable effec-tive utilization and maximizing material properties for achieving highly efficient and sustainable CO_(2) reduction reactions( CO_(2)RRs)in solid oxide elec-trolysis cells(SOECs).However,practical appli-cation of nanofiber-based electrodes faces chal-lenges in establishing sufficient interfacial contact and adhesion with the dense electrolyte.To tackle this challenge,a novel hybrid nanofiber electrode,La_(0.6)Sr_(0.4)Co_(0.15)Fe_(0.8)Pd_(0.05)O_(3-δ)(H-LSCFP),is developed by strategically incorporating low aspect ratio crushed LSCFP nanofibers into the excess porous interspace of a high aspect ratio LSCFP nanofiber framework synthesized via electrospinning technique.After consecutive treatment in 100% H_(2) and CO_(2) at 700°C,LSCFP nanofibers form a perovskite phase with in situ exsolved Co metal nanocatalysts and a high concentration of oxygen species on the surface,enhancing CO_(2) adsorption.The SOEC with the H-LSCFP electrode yielded an outstanding current density of 2.2 A cm^(-2) in CO_(2) at 800°C and 1.5 V,setting a new benchmark among reported nanofiber-based electrodes.Digital twinning of the H-LSCFP reveals improved contact adhesion and increased reaction sites for CO_(2)RR.The present work demonstrates a highly catalytically active and robust nanofiber-based fuel electrode with a hybrid structure,paving the way for further advancements and nanofiber applications in CO_(2)-SOECs.
文摘The present work explores the application of La_(0.5)Sr_(0.5)Co_(0.95)Nb_(0.05)O_(3-δ)(LSCNO)perovskite as electrode material for the symmetric solid oxide fuel cell.Symmetric solid oxide fuel cells of thin-film LSCNO electrodes were prepared to study the oxygen reduction reaction at intermediate temperature.The Rietveld refinement of syn-thesized material shows a hexagonal structure with the R-3c space group of the prepared perovskite material.Lattice parameter and fractional coordinates were utilized to calculate the oxygen ion diffusion coefficient for molecular dynamic simulation.At 973 K,the oxygen ion diffusion of LSCNO was 1.407×10^(-8)cm^(2)s^(-1) higher by order of one magnitude than that of the La_(0.5)Sr_(0.5)Co_(0.95)Nb_(0.05)O_(3-δ)(7.751×10^(-9)cm^(2)^(-1)).The results suggest that the Nb doping provide the structural stability which improves oxygen anion diffusion.The enhanced structural stability was analysed by the thermal expansion coefficient calculated experimentally and from molecular dynamics simulations.Furthermore,the density functional theory calculation revealed the role of Nb dopant for oxygen vacancy formation energy at Sr-0 and La-O planes is lower than the undoped structure.To understand the rate-limiting process for sluggish oxygen diffusion kinetics,80 nm and 40 nm thin films were fabricated using radio frequency magnetron sputtering on gadolinium doped ceria electrolyte substrate.The impedance was observed to increase with an increasing thickness,suggesting the bulk diffusion as a rate-limiting step for oxygen ion diffu-sion.The electrochemical performance was analysed for the thin-flm symmetric solid oxide fuel cell,which achieved a peak power density of 390 mW cm^(-2) at 1.02 V in the presence of H_(2) fuel on the anode side and air on the cathode side.
文摘Feasible construction of cathode materials with highly dispersed active sites can extend the tri‐ple‐phase boundaries,and therefore leading to enhanced electrode kinetics for CO_(2) electrolysis in solid oxide electrolysis cell(SOEC).Herein,highly dispersed nickel species with low loading(1.0 wt%)were trapped within the La_(0.8)Sr_(0.2)FeO_(3)–δ‐Ce_(0.8)Sm_(0.2)O_(2)–δvia a facial mechanical milling ap‐proach,which demonstrated excellent CO_(2) electrolysis performance.The highly dispersed nickel species can significantly alter the electronic structures of the LSF‐SDC without affecting its porous network and facilitate oxygen vacancy formation,thus greatly promote the CO_(2) electrolysis perfor‐mance.The highest current density of 1.53 A·cm^(-2) could be achieved when operated under 800℃ at 1.6 V,which is about 91%higher than the LSF‐SDC counterpart.
基金support from FAPESP (Sao Paulo Research Foundation,Grant Numbers 2014/02163-7,2017/11958-1,2020/14968-0)CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico,301486/2016-6)the support given by ANP (Brazil’s National Oil,Natural Gas and Biofuels Agency)through the R&D levy regulation。
文摘Batteries,fuel cells,and supercapacitors are electrochemical devices already on the market and still need a boost in kinetics to match the high energy density demand of applications.Perovskites have attracted the scientific community's attention in the last decade due to their electrocatalytic activity,chemical and structural properties,tunability,low cost,and scalability.Efforts have been made to understand the active sites and the operational mechanisms in perovskite oxides to shape them as an electrocatalyst in advanced energy devices.Understanding the role of perovskites is the key to engineering more controlled and efficient electrocatalysts via chemical synthesis,and there is still much to do.This review highlights the use of perovskites in different energy storage and conversion systems.The A,B,and A&B doping-site effects are analyzed to understand the opportunities and challenges related to this class of materials.In addition,the synthesis methods and the properties related to the doping site are described and summarized.
基金financially supported by the National Natural Science Foundation of China (U2032157)the Natural Science Foundation of Jiangsu Province (BK20201425)。
文摘The growth of electrochemically inert segregation layers on the surface of solid oxide fuel cell cathodes has become a bottleneck restricting the development of perovskite-structured oxygen reduction catalysts.Here,we report a new discovery in which enriched Ba and Fe ions on the near-surface of Nd_(1/2)Ba_(1/2)Co_(1/3)Fe_(1/3)Mn_(1/3)O_(3-δ)spontaneously agglomerate into dispersed Ba_(5)Fe_(2)O_(8) nanoparticles and maintain a highly active and durable perovskite structure on the surface.This unique surface selfcleaning phenomenon is related to the low average potential energy of Ba_(5)Fe_(2)O_(8),which is grown on the near-surface layer.The electrochemically inert Ba_(5)Fe_(2)O_(8) segregation layer on the near-surface of the perovskite catalyst achieves self-cleaning by regulating the formation energy of enriched metal oxides.This self-cleaned perovskite surface exhibits an ultrafast oxygen exchange rate,high catalytic activity for the oxygen reduction reaction,and good adaptability to the actual working conditions of solid oxide fuel cell stacks.This study paves a new way for overcoming the stubborn problem of perovskite catalyst surface deactivation and enriches the scientific knowledge of surface catalysis.
基金financially supported by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.2018ND133J)the National Natural Science Foundation of China(Nos.22309067 and 22101150)the Natural Science Foundation of Jiangsu Province,China(No.BK20190965).
文摘To explore highly active and thermomechanical stable air electrodes for intermediate-temperature solid oxide fuel cells(ITSOFCs),10mol%Ta5+doped in the B site of strontium ferrite perovskite oxide(SrTa_(0.1)Fe_(0.9)O_(3-δ),STF)is investigated and optimized.The effects of Ta^(5+)doping on structure,transition metal reduction,oxygen nonstoichiometry,thermal expansion,and electrical performance are evaluated systematically.Via 10mol%Ta^(5+)doping,the thermal expansion coefficient(TEC)decreased from 34.1×10^(-6)(SrFeO_(3-δ))to 14.6×10^(-6) K^(-1)(STF),which is near the TEC of electrolyte(13.3×10^(-6) K^(-1) for Sm_(0.2)Ce_(0.8)O_(1.9),SDC),indicates excellent thermomechanical compatibility.At 550-750℃,STF shows superior oxygen vacancy concentrations(0.262 to 0.331),which is critical in the oxygen-reduction reaction(ORR).Oxygen temperature-programmed desorption(O_(2)-TPD)indicated the thermal reduction onset temperature of iron ion is around 420℃,which matched well with the inflection points on the thermos-gravimetric analysis and electrical conductivity curves.At 600℃,the STF electrode shows area-specific resistance(ASR)of 0.152Ω·cm^(2) and peak power density(PPD)of 749 mW·cm^(-2).ORR activity of STF was further improved by introducing 30wt%Sm_(0.2)Ce_(0.8)O_(1.9)(SDC)powder,STF+SDC composite cathode achieving outstanding ASR value of 0.115Ω·cm2 at 600℃,even comparable with benchmark cobalt-containing cathode,Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3-δ)(BSCF).Distribution of relaxation time(DRT)analysis revealed that the oxygen surface exchange and bulk diffusion were improved by forming a composite cathode.At 650℃,STF+SDC composite cathode achieving an outstanding PPD of 1117 mW·cm^(-2).The excellent results suggest that STF and STF+SDC are promising air electrodes for IT-SOFCs.
基金supported by the National Natural Science Foundation of China (Nos.21701083 and 22179054).
文摘Solid oxide fuel cells(SOFCs)have attracted a great deal of interest because they have the highest efficiency without using any noble metal as catalysts among all the fuel cell technologies.However,traditional SOFCs suffer from having a higher volume,current leakage,complex connections,and difficulty in gas sealing.To solve these problems,Rolls-Royce has fabricated a simple design by stacking cells in series on an insulating porous support,resulting in the tubular segmented-in-series solid oxide fuel cells(SIS-SOFCs),which achieved higher output voltage.This work systematically reviews recent advances in the structures,preparation methods,perform-ances,and stability of tubular SIS-SOFCs in experimental and numerical studies.Finally,the challenges and future development of tubular SIS-SOFCs are also discussed.The findings of this work can help guide the direction and inspire innovation of future development in this field.
基金supported by the National Natural Science Foundation of China (51702039)。
文摘The sluggish kinetics of the electrochemical oxygen reduction reaction(ORR)in intermediatetemperature solid oxide fuel cells(IT-SOFCs)greatly limits the overall cell performance.In this study,an efficient and durable cathode material for IT-SOFCs is designed based on density functional theory(DFT)calculations by co-doping with Nb and Ta the B-site of the SrFeO_(3-δ)perovskite oxide.The DFT calculations suggest that Nb/Ta co-doping can regulate the energy band of the parent SrFeO_(3-δ)and help electron transfer.In symmetrical cells,such cathode with a SrFe_(0.8)Nb_(0.1)Ta_(0.1)O_(3-δ)(SFNT)detailed formula achieves a low cathode polarization resistance of 0.147Ωcm^(2) at 650℃.Electron spin resonance(ESR)and X-ray photoelectron spectroscopy(XPS)analysis confirm that the co-doping of Nb/Ta in SrFeO_(3-δ)B-site increases the balanced concentration of oxygen vacancies,enhancing the electrochemical performance when compared to 20 mol%Nb single-doped perovskite oxide.The cathode button cell with NiSDC|SDC|SFNT configuration achieves an outstanding peak power density of 1.3 W cm^(-2)at 650℃.Moreover,the button cell shows durability for 110 h under 0.65 V at 600℃ using wet H_(2) as fuel.
基金This work is also sponsored by the National Basic Research Program of China (No. 2003CB615702)the National Natural Science Foundation of China (No. 20646002, 20576051 and 20436030)+1 种基金Scientific Research Foundation for the Returned 0verseas China Scholars from State Ministry of Education (No. 2004527)Nanjing Ministry of Personnel.
文摘It is normally difficult to prepare nano-sized Ba0.5Sr0.5Co0.8Fe0.2O3-δ(BSCF) oxide at high temperature due to its high surface activity. The complexing process, which has successfully applied in the synthesis of nano Sm0.15Ce0.85I1.925 with crystallite size down to 5 nml, just resulted in a coarse BSCF with crystaUite size of 41.9 nm at 900℃. We applied a novel process by simply modifying the solid precursor from the complexing process with concentrated nitric acid treatment. The obtained BSCF powder had a crystaUite size of -25 nm even calcined at 1000℃. The small crystaUite size is extremely promising to enhance the electrochemical performance of cathode for solid oxide fuel cell dramatically.
基金the National Key R&D Program of China(No.2018YFB1502201)the Guangdong Basic and Applied Basic Research Foundation,China(No.2020A1515010551).
文摘For present solid oxide fuel cells(SOFCs),rapid performance degradation is observed in the initial aging process,and the dis-cussion of the degradation mechanism necessitates quantitative analysis.Herein,focused ion beam-scanning electron microscopy was em-ployed to characterize and reconstruct the ceramic microstructures of SOFC anodes.The lattice Boltzmann method(LBM)simulation of multiphysical and electrochemical processes in the reconstructed models was performed.Two samples collected from industrial-size cells were characterized,including a reduced reference cell and a cell with an initial aging process.Statistical parameters of the reconstructed microstructures revealed a significant decrease in the active triple-phase boundary and Ni connectivity in the aged cell compared with the reference cell.The LBM simulation revealed that activity degradation is dominant compared with microstructural degradation during the initial aging process,and the electrochemical reactions spread to the support layer in the aged cell.The microstructural and activity de-gradations are attributed to Ni migration and coarsening.
基金Natural Science Foundation of Guangdong Province,Grant/Award Number:2021A1515010395Fundamental Research Funds for the Central Universities,Grant/Award Number:2022ZYGXZR002+2 种基金National Natural Science Foundation of China,Grant/Award Numbers:22179039,22005105Pearl River Talent Recruitment Program,Grant/Award Number:2019QN01C693Guangdong Innovative and Entrepreneurial Research Team Program,Grant/Award Number:2021ZT09L392。
文摘While double perovskites of PrBaCo_(2)O_(6)(PBC)have been extensively developed as the cathodes for proton-conducting solid oxide fuel cells(H-SOFCs),the effects of Sr-or Ca-doping at the A site on the activity and stability of the oxygen reduction reaction are yet to be fully studied.Here,the effect of A-site doping on the oxygen reduction reaction activity and stability has been studied by evaluating the performance of both symmetrical and single cells.It is shown that Ca-doped PBC(PrBa_(0.8)Ca_(0.2)Co_(2)O_(6),PBCC)shows a slightly smaller polarization resistance(0.076Ωcm^(2))than that(0.085Ωcm^(2))of Sr-doped PBC(PrBa0.8Sr0.2Co2O6,PBSC)at 700◦C in wet air.Moreover,the degradation rate of PBCC is 0.0003Ωcm^(2)h^(−1)(0.3%h−1)in 100 h,about 1/10 of that of PBSC at 700◦C in wet air.In addition,it is also confirmed that single cells with PBCC cathode show higher peak power density(1.22Wcm^(−2)vs.1.08Wcm^(−2)at 650◦C)and better durability(degradation rate of 0.1%h^(−1)vs.0.13%h^(−1))than those with PBSC cathode.The distribution of relaxation time analyses suggests that the better stability of the PBCC electrode may come from the fast and stable surface oxygen exchange process in the medium frequency range of the electrochemical impedance spectrum.
基金financially supported by the State Key Laboratory of Clean Energy Utilization(Open Fund Project No.ZJUCEU2021001)Natural Science Foundation of Jiangsu Province(No.BK20221312).
文摘Electrochemical conversion of CO_(2)to CO is an economically feasible method for mitigating greenhouse gas emissions.Among various electrochemical approaches,solid oxide electrolysis cells(SOECs)show high potential for CO_(2)reduction reaction(CO_(2)-RR)due to their ability to operate at high temperatures,resulting in fast reaction kinetics and increased efficiency.Considering their main energy loss is still associated with the large overpotential at the fuel electrode,the development of the highly efficient and durable cathode for SOECs has been extensively searched after.Here,we propose an A-site doping strategy to enhance the properties of Sr_(2)Fe_(1.5)Mo_(0.5)O_(6−δ)(SFM),which improve its performance as a cathode in SOECs for CO_(2)-RR,demonstrating favorable activity and durability.The structural and physiochemical characterizations,together with DFT calculations,show that the partial replacement of Sr by Bi in the SFM double perovskite not only improves CO_(2) adsorption capability at the catalyst surface but also enhances oxygen ionic conduction inside the bulk oxide,resulting in enhanced CO_(2)electrocatalysis performance in SOECs.Specifically,a La_(0.8)Sr_(0.2)Ga_(0.8)Mg_(0.2)O_(3−δ) (LSGM)electrolyte-supported single cell with the new Bi-doped SFM cathode demonstrates a large current density of 1620 mA cm^(−2) at a cell potential of 1.6 V at 850°C with good operational stability up to 200 h.Bi-doped SFM thus represents a highly promising cathode for ceramic CO_(2)electrolyzers and could accelerate our transition towards a carbon-neutral society.
基金financially supported by the National Key Research and Development Program of China (No.2021YFB4001400)。
文摘The reduced sealing difficulty of tubular solid oxide fuel cells(SOFCs)makes the stacking of tubular cell groups relatively easy,and the thermal stress constraints during stack operation are smaller,which helps the stack to operate stably for a long time.The special design of tubular SOFC structures can completely solve the problem of high-temperature sealing,especially in the design of multiple single-cell series integrated into one tube,where each cell tube is equivalent to a small electric stack,with unique characteristics of high voltage and low current output,which can significantly reduce the ohmic polarization loss of tubular cells.This paper provides an overview of typical tubular SOFC structural designs both domestically and internationally.Based on the geometric structure of tubular SOFCs,they can be divided into bamboo tubes,bamboo flat tubes,single-section tubes,and single-section flat tube structures.Meanwhile,this article provides an overview of commonly used materials and preparation methods for tubular SOFCs,including commonly used materials and preparation methods for support and functional layers,as well as a comparison of commonly used preparation methods for microtubule SOFCs,It introduced the three most important parts of building a fuel cell stack:manifold,current collector,and ceramic adhesive,and also provided a detailed introduction to the power generation systems of different tubular SOFCs,Finally,the development prospects of tubular SOFCs were discussed.
文摘Compositely doped oxide La0.5Sr0.5CoO2.91 (LSC) was synthesized using solid state reaction and citric acid-nitrate low temperature self-propagating combustion methods. The crystal structure and the particle size micrograph of LSC powders synthesized by different methods were investigated with XRD and SEM. The experimental results show that the single perovskite phase of LSC can be synthesized by solid state reaction method, but LaSrCoO4 phase appears in LSC powder synthesized by citric acid-nitrate low temperature self-propagating combustion method. The LSC particle by citric acid-nitrate low temperature self- propagating combustion method has smaller size. To analyze the character of cathode material based on Ceo.gGdo.101.95(GDC) electrolyte, two types of cathode wafers were fabricated with the two kinds of LSC and GDC powders at the mass rate of 6:4, respectively. The electrical conductivity of the sintered samples was measured by four probe DC method from 300 to 800 ℃. The cathode with LSC particle by citric acid- nitrate low temperature self-propagating combustion method has higher electrical conductivity. In order to investigate the stability, the two samples were put into the muffle furnace to heat up in air at 800℃for 800 h. To analysis the reason for reduced electrical conductivity, the crystal structure and the particle micrograph of the cathode wafers before and after an exposure were investigated with XRD and SEM. The result shows that new crystal structure appears in both the two kinds of cathode wafers and crystal micrographs change a lot.
基金the funding from the Natural Science Foundation of Shaanxi Province(No.2020JQ-065)China Postdoctoral Science Foundation(No.2020 M683459)+1 种基金Start-up Research Fund of Southeast University(4003002330)Chen Xing Plan of Shanghai Jiao Tong University
文摘Symmetrical solid oxide cells(SSOCs)are very useful for energy generation and conversion.To fabricate the electrode of SSOC,it is very time-consuming to use the conventional approach.In this work,we design and develop a novel method,extreme heat treatment(EHT),to rapidly fabricate electrodes for SSOC.We show that by using the EHT method,the electrode can be fabricated in seconds(the fastest method to date),benefiting from enhanced reaction kinetics.The EHT-fabricated electrode presents a porous structure and good adhesion with the electrolyte.In contrast,tens of hours are needed to prepare the electrode by the conventional approach,and the prepared electrode exhibits a dense structure with a larger particle size due to the lengthy treatment.The EHT-fabricated electrode shows desirable electrochemical performance.Moreover,we show that the electrocatalytic activity of the perovskite electrode can be tuned by the vigorous approach of fast exsolution,deriving from the increased active sites for enhancing the electrochemical reactions.At 900℃,a promising peak power density of 966 mW cm^(-2)is reached.Our work exploits a new territory to fabricate and develop advanced electrodes for SSOCs in a rapid and high-throughput manner.
基金Foundation of Heilongjiang Bayi Agricultural University(Grant Nos.ZRCPY201916ZRCPY201817).
文摘A Solid Oxide Fuel Cell(SOFC)is an electrochemical device that converts the chemical energy of a substance into electrical energy through an oxidation-reduction mechanism.The electrochemical reaction of a solid oxide fuel cell(SOFC)generates heat,and this heat can be recovered and put to use in a waste heat recovery system.In addition to preheating the fuel and oxidant,producing steam for industrial use,and heating and cooling enclosed rooms,this waste heat can be used for many more productive uses.The large waste heat produced by SOFCs is a worry that must be managed if they are to be adopted as a viable option in the power generation business.In light of these findings,a novel approach to SOFC waste heat recovery is proposed.The SOFC is combined with a“Thermoelectric Generator and an Alkali Metal Thermoelectric Converter(TG-AMTC)”to transform the excess heat generated by both the SOFC and the TG-AMTC.The proposed TG-AMTC is evaluated using a number of performance indicators including power density,operating temperature,heat recovery rate,exergetic efficiency,energy efficiency,and recovery time.The experimental results state that TG-AMTC has provided an exergetic efficiency,energetic efficiency,and recovery time of 97%,98%,and 23%,respectively.The study proves that the proposed TG-AMTC for SOFC is an efficient method of recovering waste heat.
文摘Recently,the development and fabrication of electrode component of the solid oxide fuel cell(SOFC)have gained a significant importance,especially after the advent of electrode supported SOFCs.The function of the electrode involves the facilitation of fuel gas diffusion,oxidation of the fuel,transport of electrons,and transport of the byproduct of the electrochemical reaction.Impressive progress has been made in the development of alternative electrode materials with mixed conducting properties and a few of the other composite cermets.During the operation of a SOFC,it is necessary to avoid carburization and sulfidation problems.The present review focuses on the various aspects pertaining to a potential electrode material,the double perovskite,as an anode and cathode in the SOFC.More than 150 SOFCs electrode compositions which had been investigated in the literature have been analyzed.An evaluation has been performed in terms of phase,structure,diffraction pattern,electrical conductivity,and power density.Various methods adopted to determine the quality of electrode component have been provided in detail.This review comprises the literature values to suggest possible direction for future research.