A functionalized silicon nanowire field-effect transistor (SiNW FET) was fabricated to detect single molecules in the pM range to detect disease at the early stage with a sensitive, robust, and inexpensive method wi...A functionalized silicon nanowire field-effect transistor (SiNW FET) was fabricated to detect single molecules in the pM range to detect disease at the early stage with a sensitive, robust, and inexpensive method with the ability to provide specific and reliable data. The device was designed and fabricated by indented ash trimming via shallow anisotropic etching. The approach is a simple and low-cost technique that is compatible with the current commercial semiconductor standard CMOS process without an expensive deep reactive ion etcher. Specific electric changes were observed for DNA sensing when the nanowire surface was modified with a complementary captured DNA probe and target DNA through an organic linker (--OCH2CH3) using organofunctional alkoxysilanes (3-aminopropyl) triethoxysilane (APTES). With this surface modification, a single specific target molecule can be detected. The simplicity of the sensing domain makes it feasible to miniaturize it for the development of a cancer detection kit, facilitating its use in both clinical and non-clinical environments to allow non-expert interpretation. With its novel electric response and potential for mass commercial fabrication, this biosensor can be developed to become a portable/point of care biosensor for both field and diagnostic applications.展开更多
Titanium dioxide (TiO2) thin film was deposited on the surface of the light addressable potentiometric sensor (LAPS) to modify the sensor surface for the non-labeled detection of DNA molecules. To evaluate the effect ...Titanium dioxide (TiO2) thin film was deposited on the surface of the light addressable potentiometric sensor (LAPS) to modify the sensor surface for the non-labeled detection of DNA molecules. To evaluate the effect of ultraviolet (UV) treatment on the silanization level of TiO2 thin film by 3-aminopropyltriethoxysilane (APTS),fluorescein isothiocyanate (FITC) was used to label the amine group on the end of APTS immobilized onto the TiO2 thin film. We found that,with UV irradiation,the silanization level of the irradiated area of the TiO2 film was improved compared with the non-irradiated area under well-controlled conditions. This result indicates that TiO2 can act as a coating material on the biosensor surface to improve the effect and efficiency of the covalent immobilization of biomolecules on the sensor surface. The artificially synthesized probe DNA molecules were covalently linked onto the surface of TiO2 film. The hybridization of probe DNA and target DNA was monitored by the recording of I-V curves that shift along the voltage axis during the process of reaction. A significant LAPS signal can be detected at 10 μmol/L of target DNA sample.展开更多
文摘A functionalized silicon nanowire field-effect transistor (SiNW FET) was fabricated to detect single molecules in the pM range to detect disease at the early stage with a sensitive, robust, and inexpensive method with the ability to provide specific and reliable data. The device was designed and fabricated by indented ash trimming via shallow anisotropic etching. The approach is a simple and low-cost technique that is compatible with the current commercial semiconductor standard CMOS process without an expensive deep reactive ion etcher. Specific electric changes were observed for DNA sensing when the nanowire surface was modified with a complementary captured DNA probe and target DNA through an organic linker (--OCH2CH3) using organofunctional alkoxysilanes (3-aminopropyl) triethoxysilane (APTES). With this surface modification, a single specific target molecule can be detected. The simplicity of the sensing domain makes it feasible to miniaturize it for the development of a cancer detection kit, facilitating its use in both clinical and non-clinical environments to allow non-expert interpretation. With its novel electric response and potential for mass commercial fabrication, this biosensor can be developed to become a portable/point of care biosensor for both field and diagnostic applications.
基金Project supported by the National Natural Science Foundation of China (Nos. 30627002 and 60725102)the Interdisciplinary Research Foundation of Zhejiang University (No. 2009-15), China
文摘Titanium dioxide (TiO2) thin film was deposited on the surface of the light addressable potentiometric sensor (LAPS) to modify the sensor surface for the non-labeled detection of DNA molecules. To evaluate the effect of ultraviolet (UV) treatment on the silanization level of TiO2 thin film by 3-aminopropyltriethoxysilane (APTS),fluorescein isothiocyanate (FITC) was used to label the amine group on the end of APTS immobilized onto the TiO2 thin film. We found that,with UV irradiation,the silanization level of the irradiated area of the TiO2 film was improved compared with the non-irradiated area under well-controlled conditions. This result indicates that TiO2 can act as a coating material on the biosensor surface to improve the effect and efficiency of the covalent immobilization of biomolecules on the sensor surface. The artificially synthesized probe DNA molecules were covalently linked onto the surface of TiO2 film. The hybridization of probe DNA and target DNA was monitored by the recording of I-V curves that shift along the voltage axis during the process of reaction. A significant LAPS signal can be detected at 10 μmol/L of target DNA sample.