With the copper/iron cinder as the starting material,ferrous ions were obtained through maturing,acid leaching,reducing and purifying processes,and then iron nanoparticles were prepared by reacting with sodium borohyd...With the copper/iron cinder as the starting material,ferrous ions were obtained through maturing,acid leaching,reducing and purifying processes,and then iron nanoparticles were prepared by reacting with sodium borohydride in the system of ethanol-water.The nano Fe/SiO2 core-shell composite particles were synthesized by the hydrolysis of tetraethyl orthosilicate (TEOS).The products were characterized by X-ray diffraction (XRD),transmission electron microscope (TEM) and reflectance absorption infrared spectroscopy (RA-IR).The particles were randomly dispersed in paraffin at a mass ratio of 5.5∶4.5 for microwave electromagnetic parameters detection in the frequency range of 2.0—18.0 GHz by vector network analyzer.The results showed that there were two characteristic absorption peaks of Si—O and Si—O—Fe bond appearing at 1389 cm-1 and 878 cm-1,which indicated that the nano iron was successfully coated by SiO2.Through measuring and calculation,the minimal reflection loss was-39.0 dB at 17.2 GHz when the sample thickness was 4.5 mm.So nano Fe/SiO2 core-shell composite particles can be prepared from copper/iron cider to be used as an effective microwave absorbing material.展开更多
As a natural immune cell and antigen presenting cell,macrophages have been studied and engineered to treat human diseases.Macrophages are well-suited for use as drug carriers because of their biological characteristic...As a natural immune cell and antigen presenting cell,macrophages have been studied and engineered to treat human diseases.Macrophages are well-suited for use as drug carriers because of their biological characteristics,such as excellent biocompatibility,long circulation,intrinsic inflammatory homing and phagocytosis.Meanwhile,macrophages’uniquely high plasticity and easy re-education polarization facilitates their use as part of efficacious therapeutics for the treatment of inflammatory diseases or tumors.Although recent studies have demonstrated promising advances in macrophage-based drug delivery,several challenges currently hinder further improvement of therapeutic effect and clinical application.This article focuses on the main challenges of utilizing macrophage-based drug delivery,from the selection of macrophage sources,drug loading,and maintenance of macrophage phenotypes,to drug migration and release at target sites.In addition,corresponding strategies and insights related to these challenges are described.Finally,we also provide perspective on shortcomings on the road to clinical translation and production.展开更多
文摘With the copper/iron cinder as the starting material,ferrous ions were obtained through maturing,acid leaching,reducing and purifying processes,and then iron nanoparticles were prepared by reacting with sodium borohydride in the system of ethanol-water.The nano Fe/SiO2 core-shell composite particles were synthesized by the hydrolysis of tetraethyl orthosilicate (TEOS).The products were characterized by X-ray diffraction (XRD),transmission electron microscope (TEM) and reflectance absorption infrared spectroscopy (RA-IR).The particles were randomly dispersed in paraffin at a mass ratio of 5.5∶4.5 for microwave electromagnetic parameters detection in the frequency range of 2.0—18.0 GHz by vector network analyzer.The results showed that there were two characteristic absorption peaks of Si—O and Si—O—Fe bond appearing at 1389 cm-1 and 878 cm-1,which indicated that the nano iron was successfully coated by SiO2.Through measuring and calculation,the minimal reflection loss was-39.0 dB at 17.2 GHz when the sample thickness was 4.5 mm.So nano Fe/SiO2 core-shell composite particles can be prepared from copper/iron cider to be used as an effective microwave absorbing material.
基金supported by National Natural Science Foundation of China(NSFC82003702,NSFC31571195).
文摘As a natural immune cell and antigen presenting cell,macrophages have been studied and engineered to treat human diseases.Macrophages are well-suited for use as drug carriers because of their biological characteristics,such as excellent biocompatibility,long circulation,intrinsic inflammatory homing and phagocytosis.Meanwhile,macrophages’uniquely high plasticity and easy re-education polarization facilitates their use as part of efficacious therapeutics for the treatment of inflammatory diseases or tumors.Although recent studies have demonstrated promising advances in macrophage-based drug delivery,several challenges currently hinder further improvement of therapeutic effect and clinical application.This article focuses on the main challenges of utilizing macrophage-based drug delivery,from the selection of macrophage sources,drug loading,and maintenance of macrophage phenotypes,to drug migration and release at target sites.In addition,corresponding strategies and insights related to these challenges are described.Finally,we also provide perspective on shortcomings on the road to clinical translation and production.