Nano-3D printing has obtained widespread attention owing to its capacity to manufacture end-use components with nano-scale features in recent years.Multiphoton lithography(MPL)is one of the most promising 3D nanomanuf...Nano-3D printing has obtained widespread attention owing to its capacity to manufacture end-use components with nano-scale features in recent years.Multiphoton lithography(MPL)is one of the most promising 3D nanomanufacturing technologies,which has been widely used in manufacturing micro-optics,photonic crystals,microfluidics,meta-surface,and mechanical metamaterials.Despite of tremendous potential of MPL in laboratorial and industrial applications,simultaneous achievement of high throughput,high accuracy,high design freedom,and a broad range of material structuring capabilities remains a long-pending challenge.To address the issue,we propose an acousto-optic scanning with spatial-switching multispots(AOSS)method.Inertia-free acousto-optic scanning and nonlinear swept techniques have been developed for achieving ultrahigh-speed and aberration-free scanning.Moreover,a spatial optical switch concept has been implemented to significantly boost the lithography throughput while maintaining high resolution and high design freedom.An eight-foci AOSS system has demonstrated a record-high 3D printing rate of 7.6×10^(7)voxel s^(-1),which is nearly one order of magnitude higher than earlier scanning MPL,exhibiting its promise for future scalable 3D nanomanufacturing.展开更多
Metasurface,a forefront in emerging optical devices,has demonstrated remarkable potential for complex amplitude manipulation of light beams.However,prevailing approaches face challenges in spatial resolution and compl...Metasurface,a forefront in emerging optical devices,has demonstrated remarkable potential for complex amplitude manipulation of light beams.However,prevailing approaches face challenges in spatial resolution and complexities associated with integrating dynamic phases,impeding the simplified design and reproducible fabrication of metasurfaces.Here,we introduce an innovative approach for complex amplitude modulation within 3D nano-printed geometric phase metasurfaces.Our approach enables the generation of self-accelerating beams by encoding amplitude through phase-only manipulation,achieving high spatial resolution.Notably,this method circumvents the conventional need to adjust the geometric parameters of metasurface unit structures for amplitude manipulation,offering a streamlined and efficient route for design and fabrication complexity.This novel methodology holds promise for expedited and low-cost manufacturing of complex amplitude manipulation metasurfaces.展开更多
基金National Key Research and Development Program of China(2021YFF0502700)National Natural Science Foundation of China(52275429,62205117)+4 种基金Innovation project of Optics Valley Laboratory(OVL2021ZD002)Hubei Provincial Natural Science Foundation of China(2022CFB792)Young Elite Scientists Sponsorship Program by CAST(2022QNRC001)West Light Foundation of the Chinese Academy of Sciences(xbzg-zdsys-202206)Knowledge Innovation Program of Wuhan-Shuguang。
文摘Nano-3D printing has obtained widespread attention owing to its capacity to manufacture end-use components with nano-scale features in recent years.Multiphoton lithography(MPL)is one of the most promising 3D nanomanufacturing technologies,which has been widely used in manufacturing micro-optics,photonic crystals,microfluidics,meta-surface,and mechanical metamaterials.Despite of tremendous potential of MPL in laboratorial and industrial applications,simultaneous achievement of high throughput,high accuracy,high design freedom,and a broad range of material structuring capabilities remains a long-pending challenge.To address the issue,we propose an acousto-optic scanning with spatial-switching multispots(AOSS)method.Inertia-free acousto-optic scanning and nonlinear swept techniques have been developed for achieving ultrahigh-speed and aberration-free scanning.Moreover,a spatial optical switch concept has been implemented to significantly boost the lithography throughput while maintaining high resolution and high design freedom.An eight-foci AOSS system has demonstrated a record-high 3D printing rate of 7.6×10^(7)voxel s^(-1),which is nearly one order of magnitude higher than earlier scanning MPL,exhibiting its promise for future scalable 3D nanomanufacturing.
基金supported by the National Natural Science Foundation of China(Grant No.62175153)the National Key R&D Program of China(Grant No.2018YFA0701800)。
文摘Metasurface,a forefront in emerging optical devices,has demonstrated remarkable potential for complex amplitude manipulation of light beams.However,prevailing approaches face challenges in spatial resolution and complexities associated with integrating dynamic phases,impeding the simplified design and reproducible fabrication of metasurfaces.Here,we introduce an innovative approach for complex amplitude modulation within 3D nano-printed geometric phase metasurfaces.Our approach enables the generation of self-accelerating beams by encoding amplitude through phase-only manipulation,achieving high spatial resolution.Notably,this method circumvents the conventional need to adjust the geometric parameters of metasurface unit structures for amplitude manipulation,offering a streamlined and efficient route for design and fabrication complexity.This novel methodology holds promise for expedited and low-cost manufacturing of complex amplitude manipulation metasurfaces.