The adsorption process was studied for separating para-xylene from xylene mixture on modified nano-zeolite X in a breakthrough system. Nano-zeolitic adsorbent with different ratios of Si O2/Al2O3 was synthesized throu...The adsorption process was studied for separating para-xylene from xylene mixture on modified nano-zeolite X in a breakthrough system. Nano-zeolitic adsorbent with different ratios of Si O2/Al2O3 was synthesized through hydrothermal process and ion-exchanged with alkaline metal cations like lithium, sodium and potassium. The product was characterized by X-ray diffraction, scanning electron microscopy(SEM), nitrogen adsorption,transform electron microscopy(TEM) and in situ Fourier transform infrared(FTIR) spectroscopy. The influence of nano-zeolite water content and desorbent type on the selectivity of para-xylene toward other C8 aromatic isomers was studied. The optimization of adsorption process was also investigated under variable operation conditions. The isotherm for each isomer of C8 aromatics and the desorbents possess the adsorption characteristics of Langmuir type. The selectivity factor of para-xylene relative to each of meta-xylene, ortho-xylene and ethylbenzene under the optimum conditions obtained to be 5.36, 2.43 and 3.22, in the order given.展开更多
1 Results The catalysts which can efficiently hydro-reform higher n-paraffin to lower isoparaffins for environmentally-friendly gasoline were studied. The catalysts were examined by the conversion of n-hexadecane, n-C...1 Results The catalysts which can efficiently hydro-reform higher n-paraffin to lower isoparaffins for environmentally-friendly gasoline were studied. The catalysts were examined by the conversion of n-hexadecane, n-C16H34 to i-C6H14—i-C10H22.The tri-modally nano-porous catalysts composed of (Ni-Mo)/[γ-Al2O3], nano-oxide, and nano-crystalline zeolite had some active and selective performance because of the interface between nano-oxide and nano-zeolite. The catalyst composed of nano-crystalline MFI or BE...展开更多
文摘The adsorption process was studied for separating para-xylene from xylene mixture on modified nano-zeolite X in a breakthrough system. Nano-zeolitic adsorbent with different ratios of Si O2/Al2O3 was synthesized through hydrothermal process and ion-exchanged with alkaline metal cations like lithium, sodium and potassium. The product was characterized by X-ray diffraction, scanning electron microscopy(SEM), nitrogen adsorption,transform electron microscopy(TEM) and in situ Fourier transform infrared(FTIR) spectroscopy. The influence of nano-zeolite water content and desorbent type on the selectivity of para-xylene toward other C8 aromatic isomers was studied. The optimization of adsorption process was also investigated under variable operation conditions. The isotherm for each isomer of C8 aromatics and the desorbents possess the adsorption characteristics of Langmuir type. The selectivity factor of para-xylene relative to each of meta-xylene, ortho-xylene and ethylbenzene under the optimum conditions obtained to be 5.36, 2.43 and 3.22, in the order given.
文摘1 Results The catalysts which can efficiently hydro-reform higher n-paraffin to lower isoparaffins for environmentally-friendly gasoline were studied. The catalysts were examined by the conversion of n-hexadecane, n-C16H34 to i-C6H14—i-C10H22.The tri-modally nano-porous catalysts composed of (Ni-Mo)/[γ-Al2O3], nano-oxide, and nano-crystalline zeolite had some active and selective performance because of the interface between nano-oxide and nano-zeolite. The catalyst composed of nano-crystalline MFI or BE...