期刊文献+
共找到38篇文章
< 1 2 >
每页显示 20 50 100
Biomimetic MXene membranes with negatively thermo-responsive switchable 2D nanochannels for graded molecular sieving
1
作者 Yi Wang Yangyang Wang +5 位作者 Chang Liu Dongjian Shi Weifu Dong Baoliang Peng Liangliang Dong Mingqing Chen 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第6期1058-1067,共10页
Negatively thermo-responsive 2D membranes,which mimic the stomatal opening/closing of plants,have drawn substantial interest for tunable molecular separation processes.However,these membranes are still restricted sign... Negatively thermo-responsive 2D membranes,which mimic the stomatal opening/closing of plants,have drawn substantial interest for tunable molecular separation processes.However,these membranes are still restricted significantly on account of low water permeability and poor dynamic tunability of 2D nanochannels under temperature stimulation.Here,we present a biomimetic negatively thermo-responsive MXene membrane by covalently grafting poly(N-isopropylacrylamide)(PNIPAm)onto MXene nanosheets.The uniformly grafted PNIPAm polymer chains can enlarge the interlayer spacings for increasing water permeability while also allowing more tunability of 2D nanochannels for enhancing the capability of gradually separating multiple molecules of different sizes.As expected,the constructed membrane exhibits ultrahigh water permeance of 95.6 L m^(-2) h^(-1) bar^(-1) at 25℃,which is eight-fold higher than the state-of-the-art negatively thermoresponsive 2D membranes.Moreover,the highly temperature-tunable 2D nanochannels enable the constructed membrane to perform excellent graded molecular sieving for dye-and antibiotic-based ternary mixtures.This strategy provides new perspectives in engineering smart 2D membrane and expands the scope of temperature-responsive membranes,showing promising applications in micro/nanofluidics and molecular separation. 展开更多
关键词 Thermo-responsive 2D membrane MXene nanosheets PNIPAM Temperature-tunable 2D nanochannels Graded molecular sieving
下载PDF
Synthesis, Characterization and X-Ray Structure of a Ba(II)/Ag(I)/Cr(III)-Oxalate Salt with Water-Filled Nanochannels 被引量:1
2
作者 Clémence Eboga Tanke Bridget N. Ndosiri +2 位作者 Yves A. Mbiangué Gouet Bebga Justin Nenwa 《American Journal of Analytical Chemistry》 2016年第1期99-106,共8页
A novel mixed barium(II)/silver(I)/chromium(III) oxalate salt, Ba<sub>0.5</sub>Ag<sub>2</sub>[Cr(C<sub>2</sub>O<sub>4</sub>)<sub>3</sub>]·5H<sub>2... A novel mixed barium(II)/silver(I)/chromium(III) oxalate salt, Ba<sub>0.5</sub>Ag<sub>2</sub>[Cr(C<sub>2</sub>O<sub>4</sub>)<sub>3</sub>]·5H<sub>2</sub>O (1), with open architecture has been synthesized in water and characterized by elemental analysis, vibrational and electronic spectra, and single crystal X-ray structure determination. Compound 1 crystallizes in a monoclinic space group C2/c, with unit cell parameters a = 18.179(3), b = 14.743(2), c = 12.278(2)&Aring;, β = 113.821(3), V = 3010.34(90) &Aring;<sup>3</sup>, Z = 8. The structure is characterized by a network of anionic [Cr(C<sub>2</sub>O<sub>4</sub>)<sub>3</sub>]<sup>3-</sup> units connected through the O atoms of the oxalates to Ba<sup>2+</sup> and Ag<sup>+</sup> sites, forming a three-dimensional coordination polymer with one-dimensional isolated nanochannels parallel to the c axis, and encapsulating hydrogen-bonded guest water molecules. The bulk structure is consolidated by O–H···O bridgings within the nanochannels and by coulombic interactions. 展开更多
关键词 Crystal Structure Chromium(III) Complex nanochannels Coordination Polymer Guest-Water Molecules
下载PDF
On flow characteristics of liquid-solid mixed-phase nanofluid inside nanochannels 被引量:4
3
作者 H.AMINFAR N.RAZMARA M.MOHAMMADPOURFARD 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2014年第12期1541-1554,共14页
The atomic behavior of liquid-solid mixed-phase nanofluid flows inside nanochannels is investigated by a molecular dynamics simulation (MDS). The results of visual observation and statistic analysis show that when t... The atomic behavior of liquid-solid mixed-phase nanofluid flows inside nanochannels is investigated by a molecular dynamics simulation (MDS). The results of visual observation and statistic analysis show that when the nanoparticles reach near each other, the strong interatomic force will make them attach together. This aggrega- tion continues until all nanoparticles make a continuous cluster. The effect of altering the external force magnitude causes changes in the agglomeration rate and system enthalpy. The density and velocity profiles are shown for two systems, i.e., argon (Ar)-copper (Cu) nanofluid and simple Ar fluid between two Cu walls. The results show that using nanopar- ticles changes the base fluid particles ordering along the nanochannel and increases the velocity. Moreover, using nanoparticles in simple fluids can increase the slip length and push the near-wall fluid particles into the main flow in the middle of the nanochannel. 展开更多
关键词 clustering liquid-solid molecular dynamics simulation (MDS) nanofluid nanochannel
下载PDF
Impacts of multi-foulings on salinity gradient energy conversion process in negatively charged conical nanochannels
4
作者 MAO RuiJie CHEN Xi +3 位作者 ZHOU RuHong LONG Rui LIU ZhiChun LIU Wei 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2024年第6期1714-1726,共13页
Membrane fouling inevitably occurs during nanofluidic reverse electrodialysis.Herein,the impact of multi-fouling on the energy conversion performance of negatively charged conical nanochannels under asymmetrical confi... Membrane fouling inevitably occurs during nanofluidic reverse electrodialysis.Herein,the impact of multi-fouling on the energy conversion performance of negatively charged conical nanochannels under asymmetrical configurations is systematically investigated.The results reveal that in Configuration I,where a high-concentration solution is applied at the tip side,at small concentration ratios,multiple foulings reduce the electric power.In Configuration II,where a low-concentration solution is applied at the tip side,multiple foulings near the base side contribute to the electric power.Any fouling that formed near the lowconcentration entrance diminished the electric power and energy conversion efficiency.Multi-fouling lowered the electrical power consumption by 69.27%and 99.94%in Configurations I and II,respectively.In Configuration I,the electric power first increased with increasing fouling surface charge density,reached its maximum value,and thereafter decreased.In Configuration II,the electric power first decreased with increasing fouling surface charge density,reached its minimum value,and thereafter increased.Large negative or positive charge densities of fouling contribute to the electric power and energy conversion efficiency. 展开更多
关键词 conical nanochannel FOULING nanofluidic reverse electrodialysis salinity gradient energy
原文传递
Outer-surface Covering of Nanochannels with Hydrogel for Highly Sensitive and Specific Cr(VI)Detection Through Analyte-caused Charge Change in Hydrogel
5
作者 LIU Huan SUN Xueting +2 位作者 DAI Yu ZHANG Xiaojin XIA Fan 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2024年第2期326-332,共7页
Nanochannels have made great progress and are a promising platform for detecting a series of targets.However,most nanochannels are modified on the inner wall,while ignoring the outer surface.Here,we modified the outer... Nanochannels have made great progress and are a promising platform for detecting a series of targets.However,most nanochannels are modified on the inner wall,while ignoring the outer surface.Here,we modified the outer surface of nanochannels with hydrogel.Different from other reported outer-surface modification methods,we directly cover nanochannels with hydrogel to form heterogeneous membrane.The selected hydrogel hardly adsorbs other ions and shows specific adsorption for Cr(VI).The adsorption sites in hydrogel are homogeneous,and Cr(VI)adsorption onto hydrogel is endothermic and spontaneous.The charge in hydrogel changes after Cr(VI)adsorption,and the resulting current changes can be used for the detection of Cr(VI)with the detection limit of 10−11 mol/L.Our platform is expected to be used for Cr(VI)detection in living organisms,especially within cells.This work provides a new approach for outer-surface modification of nanochannels and offers a new choice for nanochannel detection platforms. 展开更多
关键词 NANOCHANNEL HYDROGEL Heterogeneous membrane Cr(VI)detection
原文传递
Nanopores/Nanochannels Based on Electrical and Optical Dual Signal Response for Application in Biological Detection 被引量:1
6
作者 Guangwen Lu Niya Lin +4 位作者 Zhaojun Chen Wenlian Jiang Jing-Jing Hu Fan Xia Xiaoding Lou 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2023年第11期1374-1384,共11页
Cancers and chronic diseases have always been global health problems. The occurrence and development of such diseases are closely related to the abnormalities of proteins, nucleic acids, ions or small molecules in the... Cancers and chronic diseases have always been global health problems. The occurrence and development of such diseases are closely related to the abnormalities of proteins, nucleic acids, ions or small molecules in the body. Nowadays, nanopores/nanochannels have emerged as a powerful platform for detecting these biomolecules based on the electrical signal variation caused by biomolecules passing. However, detection relied on the electrical signal easily suffered from the clogging defects, low throughput, and strong background signals. Fortunately, the emergence of designing nanopores/nanochannels based on electrical and optical dual signal response has brought innovative impetus to biological detection, which can also identify the chemical compositions and conformations of the biomolecules. In this review, we summarize the reasonable preparation of nanopores/nanochannels with electrical and optical dual signal response and their application in biological detection. According to different biomolecules, we divide the targets into four types, including nucleic acids, small molecules, ions and proteins. In each section, the design of representative examples and the principle of dual signal generation are introduced and discussed. Finally, the prospects and challenges of nanopores/nanochannels based on electrical and optical dual signal response are also discussed. 展开更多
关键词 Biomolecules NANOPORES nanochannels Electrical and optical Fluorescence lon current
原文传递
Water’s motions in x–y and z directions of 2D nanochannels:Entirely different but tightly coupled
7
作者 Shouwei Liao Qia Ke +1 位作者 Yanying Wei Libo Li 《Nano Research》 SCIE EI CSCD 2023年第5期6298-6307,共10页
Two-dimensional(2D)material-based membrane separation has attracted increasing attention due to its promising performance compared with traditional membranes.However,in-depth understanding of water transportation beha... Two-dimensional(2D)material-based membrane separation has attracted increasing attention due to its promising performance compared with traditional membranes.However,in-depth understanding of water transportation behavior in such confined nanochannels is still lacking,which hinders the development of 2D nanosheets membranes.Herein,we investigated water confined in graphene or MoS_(2)nanochannels by molecular dynamics(MD)simulations and found water’s diffusivity always varied linearly with their mean square displacement along z direction(Δz^(2))when system variables(e.g.,water molecules’number,channel height,nonbonded interaction parameter,harmonic potential constraining water’s z-coordinate)changed.Such linear correlation applies to different water models and different force fields(FFs)of channel walls(e.g.,different Lennard–Jones parameters or even flexible FF),no matter whether water molecules form 3-,2-,or quasi-2-layer structure in the nanochannel.This indicates,though water molecules’motion along z direction(z-fluctuation,confined within 1 nm)and that in xy plane(xydiffusion)are entirely different,they are tightly coupled:Violent z-fluctuation would produce more transient void to facilitate xydiffusion,which is to the sharp contrary of bulk water,where motions in x,y,z directions are symmetric,but independent.Our work could help design high performance 2D nanochannels and discover more novel principles in nano-fluidics and membrane separation fields. 展开更多
关键词 graphene membranes NANOCHANNEL nanofluidics water diffusion
原文传递
Construction and application of bioinspired nanochannels based on two-dimensional materials 被引量:1
8
作者 Jinlin Hao Weijie Wang +3 位作者 Jiawei Zhao Honglin Che Lu Chen Xin Sui 《Chinese Chemical Letters》 SCIE CAS CSCD 2022年第5期2291-2300,共10页
With the development of nanotechnology and materials science,bioinspired nanochannels appeared by mimicking the intelligent functions of biological ion channels.They have attracted a great deal of at-tention in recent... With the development of nanotechnology and materials science,bioinspired nanochannels appeared by mimicking the intelligent functions of biological ion channels.They have attracted a great deal of at-tention in recent years due to their controllable structure and tunable chemical properties.Inspired by the layered microstructure of nacre,2D layered materials as excellent matrix material of nanochannel come into our field of vision.Bionic nanochannels based on 2D materials have the advantages of facile preparation,tunable channel size and length,easy expansion,and modification,etc.Therefore,the 2D layered nanofluid system based on bionic nanochannels from 2D layered materials has great potential in biomimetic microsensors,membrane separations,energy conversion,and so on.In this paper,we focus on the construction and application of bionic nanochannels based on 2D layer materials.First,a basic understanding of nanochannels based on 2D materials is briefly introduced,we also present the property of the 2D materials and construction strategies of bionic nanochannels.Subsequently,the application of these nanochannels in responsive channels and energy conversion is discussed.The unsolved challenges and prospects of 2D materials-based nanochannels are proposed in the end. 展开更多
关键词 Bioinspired nanochannels 2D material Layered structure Energy conversion Responsive nanochannels
原文传递
Tuning the primary selective nanochannels of MOF thin-film nanocomposite nanofiltration membranes for efficient removal of hydrophobic endocrine disrupting compounds 被引量:1
9
作者 Ruobin Dai Hongyi Han +2 位作者 Yuting Zhu Xi Wang Zhiwei Wang 《Frontiers of Environmental Science & Engineering》 SCIE EI CSCD 2022年第4期1-13,共13页
Metal organic framework(MOF)incorporated thin-film nanocomposite(TFN)membranes have the potential to enhance the removal of endocrine disrupting compounds(EDCs).In MOF-TFN membranes,water transport nanochannels includ... Metal organic framework(MOF)incorporated thin-film nanocomposite(TFN)membranes have the potential to enhance the removal of endocrine disrupting compounds(EDCs).In MOF-TFN membranes,water transport nanochannels include(i)pores of polyamide layer,(ii)pores in MOFs and(iii)channels around MOFs(polyamide-MOF interface).However,information on how to tune the nanochannels to enhance EDCs rejection is scarce,impeding the refinement of TFN membranes toward efficient removal of EDCs.In this study,by changing the polyamide properties,the water transport nanochannels could be confined primarily in pores of MOFs when the polyamide layer became dense.Interestingly,the improved rejection of EDCs was dependent on the water transport channels of the TFN membrane.At low monomer concentration(i.e.,loose polyamide structure),the hydrophilic nanochannels of MIL-101(Cr)in the polyamide layer could not dominate the membrane separation performance,and hence the extent of improvement in EDCs rejection was relatively low.In contrast,at high monomer concentration(i.e.,dense polyamide structure),the hydrophilic nanochannels of MIL-101(Cr)were responsible for the selective removal of hydrophobic EDCs,demonstrating that the manipulation of water transport nanochannels in the TFN membrane could successfully overcome the permeability and EDCs rejection trade-off.Our results highlight the potential of tuning primary selective nanochannels of MOF-TFN membranes for the efficient removal of EDCs. 展开更多
关键词 Porous metal organic framework Thin-film nanocomposite membrane Primary selective nanochannels NANOFILTRATION Endocrine disrupting compounds
原文传递
Self-assembled lamellar nanochannels in polyoxometalate-polymer nanocomposites for proton conduction 被引量:1
10
作者 Haibo He Gang Wang +4 位作者 Shengchao Chai Xiang Li Liang Zhai Lixin Wu Haolong Li 《Chinese Chemical Letters》 CSCD 2021年第6期2013-2016,共4页
The construction of nanostructured ion-transport channels is highly desirable in the design of advanced electrolyte materials,as it can enhance ion conductivity by offering short ion-transport pathways.In this work,we... The construction of nanostructured ion-transport channels is highly desirable in the design of advanced electrolyte materials,as it can enhance ion conductivity by offering short ion-transport pathways.In this work,we present a supramolecular strategy to fabricate a nanocomposite electrolyte containing highly ordered lamellar proton-conducting nanochannels,by the electrostatic self-assembly of a polyoxometalate H_(3)PW1_(2)O_(4)O(PW)and a comb copolymer poly(4-methlstyrene)-graft-poly(N-vinyl pyrrolidone).PW can effectively regulate the self-assembling order of polymer moieties to form a large-ra nge lamellar structure,meanwhile,introducing protons into the nanoscale lamellar domains to build proton transport channels.Moreover,the rigid PW clusters contribute a remarkable mechanical reinforcement to the nanocomposites.The lamellar nanocomposite exhibits a conductivity of 4.3×10^(-4)S/cm and a storage modulus of 1.1×10^(7)Pa at room temperature.This study provides a new strategy to construct nanostructured ion-conductive pathways in electrolyte materials. 展开更多
关键词 SELF-ASSEMBLY Lamellar nanochannels Nanocomposite electrolytes Comb copolymers POLYOXOMETALATES
原文传递
Biomimetic smart nanochannels for power harvesting 被引量:3
11
作者 Ganhua Xie Liping Wen Lei Jiang 《Nano Research》 SCIE EI CAS CSCD 2016年第1期59-71,共13页
With the increasing requirements of reliable and environmentally friendly energy resources, porous materials for sustainable energy conversion technologies have attracted intensive interest in the past decades. As an ... With the increasing requirements of reliable and environmentally friendly energy resources, porous materials for sustainable energy conversion technologies have attracted intensive interest in the past decades. As an important block of porous materials, biomimetic smart nanochannels (BSN) have been developed rapidly into an attractive field for their well-tunable geometry and chemistry. With inspiration from nature, many works have been reported to utilize BSN to harvest clean energy. In this review, we summarize recent progress in the BSN for power harvesting from four parts of brief introduction of BSN, biological prototypes for power harvesting, BSN-based energy conversion, and conclusion and outlook. Overall, by learning from nature, exploiting new avenues and improving the performance of BSN, a number of exciting developments in the near future may be anticipated. 展开更多
关键词 energy conversion biomimetic nanochannel photoelectric salinity gradient
原文传递
Shape effect of nanochannels on water mobility
12
作者 Guo-Xi Nie Yu Wang Ji-Ping Huang 《Frontiers of physics》 SCIE CSCD 2016年第6期175-182,共8页
Confinement can induce unusual behaviors of water. Inspired by the fabrication of carbon nanotubes with noncircular cross sections, we performed molecular dynamics simulations to investigate the mobilities of water co... Confinement can induce unusual behaviors of water. Inspired by the fabrication of carbon nanotubes with noncircular cross sections, we performed molecular dynamics simulations to investigate the mobilities of water confined in carbon nanochannels with circular, square, and equilateral triangular cross sections over a variety of dimensions. We find that water exhibits disparate mobilities across different types of channels below 0.796 nm(2). Notably, compared with the other two channels, water in equilateral triangular channels displays the greatest mobilities. Moreover, at 0.425 nm(2), different ordered structures are found in the three channels, and water inside the square channel exhibits an extremely low mobility. It is also found that above 0.796 nm(2), the mobilities along the tube axis of water converge to that of the bulk. These phenomena are understood by analyzing the structure, dynamics, and hydrogen bonding of water. Our work explores the mobilities of water across noncircular carbon nanochannels, which may expand the prospect of noncircular nanochannels in scientific studies and practical applications, such as desalination and drug delivery. 展开更多
关键词 molecular dynamics simulations MOBILITY noncircular NANOCHANNEL WATER
原文传递
Temperature Fluctuations in a Rectangular Nanochannel
13
作者 José A. Fornés 《Journal of Biomaterials and Nanobiotechnology》 2015年第3期117-125,共9页
We consider an incompressible fluid in a rectangular nanochannel. We solve numerically the three dimensional Fourier heat equation to get the steady solution for the temperature. Then we set and solve the Langevin equ... We consider an incompressible fluid in a rectangular nanochannel. We solve numerically the three dimensional Fourier heat equation to get the steady solution for the temperature. Then we set and solve the Langevin equation for the temperature. We have developed equations in order to determine relaxation time of the temperature fluctuations, τT = 4.62 × 10-10s. We have performed a spectral analysis of the thermal fluctuations, with the result that temporal correlations are in the one-digit ps range, and the thermal noise excites the thermal modes in the two-digit GHz range. Also we observe long-range spatial correlation up to more than half the size of the cell, 600 nm;the wave number, q, is in the 106 m-1 range. We have also determined two thermal relaxation lengths in the z direction: l1 = 1.18 nm and l2 = 9.86 nm. 展开更多
关键词 nanochannels Temperature FLUCTUATIONS Random Heat Flow Thermal RELAXATION TEMPORAL and Spatial CORRELATIONS
下载PDF
Anionic Nanochanneled Silver-Deficient Oxalatochromate(III) Complex with Hydroxonium as Counter Ion: Synthesis, Characterization and Crystal Structure
14
作者 Clémence T. Eboga Gouet Bebga +4 位作者 Yves A. Mbiangué Emmanuel N. Nfor Patrick L. Djonwouo Michel M. Bélombé Justin Nenwa 《Open Journal of Inorganic Chemistry》 2017年第3期75-87,共13页
Reaction of Ba0.50[Ag2Cr(C2O4)3]·5H2O with Ag2SO4 in an aqueous solution of sulfuric acid (pH ≈ 3) yielded the silver(I)/chromium(III) oxalate salt H0.50[Ag2.50Cr(C2O4)3]·5H2O (1). Compound 1 can be best de... Reaction of Ba0.50[Ag2Cr(C2O4)3]·5H2O with Ag2SO4 in an aqueous solution of sulfuric acid (pH ≈ 3) yielded the silver(I)/chromium(III) oxalate salt H0.50[Ag2.50Cr(C2O4)3]·5H2O (1). Compound 1 can be best described as an anionic silver-deficient oxalatochromate(III) complex [Ag2.50Cr(C2O4)3]0.5- with nanochannels containing hydrogen-bonded water molecules and protons. Thermal analyses show significant weight losses corresponding to the elimination of water molecules of crystallization followed by the decomposition of the network. 展开更多
关键词 Silver-Deficient Oxalatochromate(III) Water-Filled nanochannels PROTONS Thermal Analysis Crystal Structure
下载PDF
Electrokinetic pumping system based on nanochannel membrane for liquid delivery
15
作者 Ling Xin Chen Qing Ling Li +2 位作者 Xiao Lei Wang Hai Long Wang Ya Feng Guan 《Chinese Chemical Letters》 SCIE CAS CSCD 2007年第3期352-354,共3页
Nonmechanical pumping of liquids is of key importance for applications from the biomedical microfluidic chip to drug delivery systems. In this paper, a new electrokinetic pump (EOP) system with polycarbonate nanoeha... Nonmechanical pumping of liquids is of key importance for applications from the biomedical microfluidic chip to drug delivery systems. In this paper, a new electrokinetic pump (EOP) system with polycarbonate nanoehannel membrane sandwiched between two membrane holders was constructed. The pump was tested with water and phosphate buffer at 1-6 V applied voltage, the maximum pressure and flow rate are 0.32 MPa (3.2 atm) and 4.2 μL/min for phosphate buffer, respectively. This proof-of-concept pump shows its potential use for drugs or chemical agents delivery by the usage of different membrane materials. 展开更多
关键词 Electrokinetic pump Electroosmotic pump NANOCHANNEL Microfluidic chip ΜTAS
下载PDF
Electroosmotic Driving Liquid Using Nanosilica Packed Column
16
作者 LingXinCHEN GuoAnLUO TaoWEN 《Chinese Chemical Letters》 SCIE CAS CSCD 2005年第6期809-811,共3页
关键词 Electroosmotic pump NANOSILICA NANOCHANNEL chip.
下载PDF
Fluctuating hydrodynamic methods for fluid-structure interactions in confined channel geometries
17
作者 Y. WANG H. LEI P.J. ATZBERGER 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2018年第1期125-152,共28页
We develop computational teractions subject to thermal fluctuations geometry. The methods take into account methods for the study of fluid-structure in- when confined within channels with slit-like the hydrodynamic co... We develop computational teractions subject to thermal fluctuations geometry. The methods take into account methods for the study of fluid-structure in- when confined within channels with slit-like the hydrodynamic coupling and diffusivity of microstructures when influenced by their proximity to no-slip walls. We develop stochas- tic numerical methods subject to no-slip boundary conditions using a staggered finite volume discretization. We introduce techniques for discretizing stochastic systems in a manner that ensures results consistent with statistical mechanics. We show how an exact fluctuation-dissipation condition can be used for this purpose to discretize the stochastic driving fields and combined with an exact projection method to enforce incompressibil- ity. We demonstrate our computational methods by investigating how the proximity of ellipsoidal colloids to the channel wall affects their active hydrodynamic responses and passive diffusivity. We also study for a large number of interacting particles collective drift-diffusion dynamics and associated correlation h/actions. We expect the introduced stochastic computational methods to be broadly applicable to applications in which con- finement effects play an important role in the dynamics of microstructures subject to hydrodynamic coupling and thermal fluctuations. 展开更多
关键词 fluctuating Eulerian-Lagrangian method hydrodynamics immersed (SELM) ellipsoidal colloid boundary method stochastic mobility NANOCHANNEL
下载PDF
Controlling Diffusion by Varying Width of Layers in Nano Channel
18
作者 Ishu Goyal Sunita Srivastava K.Tankeshwar 《Nano-Micro Letters》 SCIE EI CAS 2012年第3期154-157,共4页
Diffusive dynamics of fluid forming layers of high and low density regions in a nanochannel has been investigated.Diffusion coefficient in direction parallel and perpendicular to the confining wall has been found to s... Diffusive dynamics of fluid forming layers of high and low density regions in a nanochannel has been investigated.Diffusion coefficient in direction parallel and perpendicular to the confining wall has been found to show behaviour which is not observed in micro channel or bulk systems.The behaviour of diffusion is found to be controlled by the width of layers formed in nanochannel due to wall and particle interactions.This is an important result as width of layers and hence flow of fluid inside nano pores/tube can be controlled by an external source. 展开更多
关键词 NANOCHANNEL Layer DIFFUSION
下载PDF
NANOSTRUCTURES OF FUNCTIONAL BLOCK COPOLYMERS
19
作者 Guojun Liu Department of Chemistry, University of Calgary, 2500 University Dr., NW, Calgary, Alberta, Canada T2N IN4 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2000年第3期255-262,共8页
Nanostructure fabrication from block copolymers in my group normally involves polymer design, synthesis, self-assembly, selective domain crosslinking, and sometimes selective domain removal. Preparation of thin films ... Nanostructure fabrication from block copolymers in my group normally involves polymer design, synthesis, self-assembly, selective domain crosslinking, and sometimes selective domain removal. Preparation of thin films withnanochannels was used to illustrate the strategy we took. In this particular case, a linear triblock copolymer polyisoprenc-block-poly(2-cinnamoylethyl methacrylate)-block-poly(t-butyl acrylate), PI-b-PCEMA-b-PtBA, was used. Films, 25 to50 μm thick, were prepared from casting on glass slides a toluene solution of PI-b-PCEMA-b-PtBA and PtBA homopolymer,hPtBA, where hPtBA is shorter than the PtBA block. At the hPtBA mass faction of 20% relative to the triblock or the totalPtBA (hPtBA and PtBA block) volume fraction of 0.44, hPtBA and PtBA formed a seemingly continuous phase in the matrixof PCEMA and Pl. Such a block segregation pattern was locked in by photocrosslinking the PCEMA domain. Nanochannelswere formed by extracting out hPtBA with solvent. Alternatively. larger channels were obtained from extracting out hPtBAand hydrolyzing the t-butyl groups of the PtBA block. Such membranes were not liquid permeable but had gas permeabilityconstants ~6 orders of magnitude higher than that of low-density polyethylene films. 展开更多
关键词 NANOSTRUCTURES Block copolymers Nanochannel generation Self-Assembly Polyisoprene-b-poly(2-cinnanoylethyl methacrylate)-b-poly(t-butyl acrylate)
下载PDF
Nanoconfinement-induced water molecules and hydrogen molecules transport behaviors in ball-in-ball structure photocatalysts to improve hydrogen evolution
20
作者 Ben Chong Baorong Xu +2 位作者 He Li Honghui Ou Guidong Yang 《Nano Research》 SCIE EI CSCD 2024年第5期3752-3760,共9页
The diffusion,adsorption/desorption behaviors of water molecules and hydrogen molecules are of great importance in heterogeneous photocatalytic hydrogen production.In the study of structure-property-performance relati... The diffusion,adsorption/desorption behaviors of water molecules and hydrogen molecules are of great importance in heterogeneous photocatalytic hydrogen production.In the study of structure-property-performance relationships,nanoconfined space provides an ideal platform to promote mass diffusion and transfer due to their extraordinary properties that are different from the bulk systems.Herein,we designed and prepared a nanoconfined CdS@SiO_(2)-NH_(2) nanoreactor,whose shell is composed of amino-functionalized silica nanochannels,and encapsulates spherical CdS as a photocatalyst inside.Experimental and simulated results reveal that the amino-functionalized nanochannels promote water molecules’and hydrogen molecules’directional diffusion and transport.Water molecules are enriched in the nanocavity between the core and the shell,and promote the interfacial photocatalytic reaction.As a result,the maximized water enrichment and minimized hydrogen-occupied active sites enable photocatalyst with optimized mass transfer kinetics and localization electron distribution on the CdS surface,leading to superior hydrogen production performance with activity as high as 37.1 mmol·g^(-1)·h^(-1). 展开更多
关键词 nanochannels photocatalytic hydrogen evolution mass transfer amino-functionalized CdS
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部