Metal-organic frameworks(MOFs)have gained attention in the development of MOFs/polymer hybrid membranes for pervaporation.However,the agglomeration of MOFs particles and interfacial defects limit its further applicati...Metal-organic frameworks(MOFs)have gained attention in the development of MOFs/polymer hybrid membranes for pervaporation.However,the agglomeration of MOFs particles and interfacial defects limit its further application.In this study,we present a novel approach to fabricate a ZIF-8@PEBAX/PVDF nanocomposite membrane for removing thiophene from the model gasoline by combination of selfassembly and in-situ growth.Firstly,a PVDF supporting membrane was modified to have a negative charge.Next,positively charged zinc ions were attracted onto the negatively charged PVDF supporting membrane through electrostatic interaction.Afterwards,the Zinc ions deposited PVDF membrane was immersed into dimethylimidazole solution to form a uniform ZIF-8 layer.Finally,the ZIF-8 layer was coated with poly(ether-block-amide)(PEBAX)using the pouring method.Experimental results showed that the separating efficiency of the ZIF-8@PEBAX/PVDF nanocomposite membrane was improved significantly compared to that of pristine PEBAX membrane.The optimal permeation flux and enrichment factor of membrane were 27.80 kg(m^(2)h)^(-1)and 6.9,respectively.展开更多
In this investigation, polymeric nanocomposite membranes(PNMs) were prepared via incorporating zinc oxide(ZnO) into poly(ether-block-amide)(PEBAX-1074) polymer matrix with different loadings. The neat membrane a...In this investigation, polymeric nanocomposite membranes(PNMs) were prepared via incorporating zinc oxide(ZnO) into poly(ether-block-amide)(PEBAX-1074) polymer matrix with different loadings. The neat membrane and nanocomposite membranes were prepared via solution casting and solution blending methods, respectively. The fabricated membranes were characterized by field emission scanning electron microscopy(FESEM) to survey cross-sectional morphologies and thermal gravimetric analysis(TGA)to study thermal stability. Fourier transform infrared(FT-IR) and X-ray diffraction(XRD) analyses were also employed to identify variations of the chemical bonds and crystal structure of the membranes, respectively. Permeation of pure gases, CO, CHand Nthrough the prepared neat and nanocomposite membranes was studied at pressures of 3–18 bar and temperature of 25 °C. The obtained results showed that the fabricated nanocomposite membranes exhibit better separation performance compared to the neat PEBAX membrane in terms of both permeability and selectivity. As an example, at temperature of 25 °C and pressure of 3 bar, COpermeability, ideal CO/CHand CO/Nselectivity values for the neat PEBAX membrane are 110.67 Barrer, 11.09 and 50.08, respectively, while those values are 152.27 Barrer,13.52 and 62.15 for PEBAX/ZnO nanocomposite membrane containing 8 wt% ZnO.展开更多
The Au-Pt alloy nanoparticles(Au-PtNPs) were electrochemically deposited on the surface of polyaniline nanotube(nanoPAN) and chitosan(CS) modified glassy carbon electrode(GCE). The electrochemical behavior of ...The Au-Pt alloy nanoparticles(Au-PtNPs) were electrochemically deposited on the surface of polyaniline nanotube(nanoPAN) and chitosan(CS) modified glassy carbon electrode(GCE). The electrochemical behavior of lincomycin at Au-PtNPs/nanoPAN/CS modified GCE was investigated by cyclic voltammetry, linear sweep voltammetry and chronocoulometry. Cyclic voltammetric experiments show that lincomycin at the nanocomposite membrane modified electrode exhibited a pair of quasi-reversible redox peaks in pH=6.0 PBS. The membrane could accelerate the electron transfer of lincomycin on the electrode and significantly enhance the peak current. In a range of 3.0-100.0 mg/L, the reductive peak current of lincomycin at 0.42 V was linearly related to its concentration and the linear regression equation was ip,c=0.2703ρ-0.0042(ip, c: μA; ρ: mg/L; r=0.998, n=7) with a detection limit of 1.0 mg/L(S/N =3). Compared with other methods, this method exhibited many advantages such as high sensitivity, selectivity, wide linear range and low detection limit. The method was used to determine the content of lincomycin in injections commercially available with satisfactory results. Some electrochemical parameters involved in the redox reaction of lincomycin, such as parameter of kinetic ha, standard rate constant ks and the number of H^+, were also calculated.展开更多
Waste heat management holds great promise to create a sustainable and energy-efficient society as well as contributes to the alleviation of global warming.Harvesting and converting this waste heat in order to improve ...Waste heat management holds great promise to create a sustainable and energy-efficient society as well as contributes to the alleviation of global warming.Harvesting and converting this waste heat in order to improve the efficiency is a major challenge.Here we report biomimetic nacre-like hydroxyl-functionalized boron nitride(BN)-polyimide(PI)nanocomposite membranes as efficient 2D in-plane heat conductor to dissipate and convert waste heat at high temperature.The hierarchically layered nanostructured membrane with oriented BN nanosheets gives rise to a very large anisotropy in heat transport properties,with a high in-plane thermal conductivity(TC)of 51 Wm^(-1) K^(-1) at a temperature of~300 C,7314%higher than that of the pure polymer.The membrane also exhibits superior thermal stability and fire resistance,enabling its workability in a hot environment.In addition to cooling conventional exothermic electronics,the large TC enables the membrane as a thin and 2D anisotropic heat sink to generate a large temperature gradient in a thermoelectric module(△T=23 ℃)through effective heat diffusion on the cold side under 220 C heating.The waste heat under high temperature is therefore efficiently harvested and converted to power electronics,thus saving more thermal energy by largely decreasing consumption.展开更多
Transport of copper ions through nanocomposite chitosan/polyvinyl alcohol thin adsorptive membranes has been mathematically investigated in the current study. Unsteady-state diffusive transport model was coupled with ...Transport of copper ions through nanocomposite chitosan/polyvinyl alcohol thin adsorptive membranes has been mathematically investigated in the current study. Unsteady-state diffusive transport model was coupled with the Freundlich isotherm to predict the concentration of the ions in dialysis permeation operation. Pristine model was not successful in predicting the experimental data based upon its low coefficients of determination(0.1展开更多
Modified clay/polyethersulfone(PES) mixed matrix membranes(MMMs) were prepared by acid activated montmorillonite(AA-MMT) with different concentrations and used to eliminate dyes and remove heavy metals from aque...Modified clay/polyethersulfone(PES) mixed matrix membranes(MMMs) were prepared by acid activated montmorillonite(AA-MMT) with different concentrations and used to eliminate dyes and remove heavy metals from aqueous solution. The morphology and physiochemical properties of prepared clay nanoparticles and MMMs were characterized using X-ray diffraction(XRD), Fourier transform infrared(FTIR) spectroscopy, scanning electron microscopy(SEM), enegy dispersive X-ray(EDX) spectroscopy, Brunauer-Emmett-Teller(BET) analysis, atomic force microscopy(AFM), contact angle measurement and fouling studies. The filtration study showed that removal of dyes and heavy metals was strongly dependent on p H so that dyes with positive and negative charges showed different separation efficiency in acidic and alkaline conditions. The modified membranes possessed better heavy metal removal in acidic and alkaline p Hs. When the rejection of heavy metals was measured in an alkaline environment, it was observed that the rejection had a great increase compared to the neutral values for Zn^(2+) and Ni^(2+) ions, while rejection of Cu^(2+) and Cd^(2+) did not undergo significant changes. So it can be concluded that modified membranes show good selectivity for elimination of Zn^(2+) and Ni^(2+) ions with respect to other cations.展开更多
Nanocomposite cation exchange membranes(CEMs) were prepared by adding various loadings of functionalized silica nanoparticles to the sulfonated polyethersulfone(s PES) polymeric matrix. The silica nanoparticles we...Nanocomposite cation exchange membranes(CEMs) were prepared by adding various loadings of functionalized silica nanoparticles to the sulfonated polyethersulfone(s PES) polymeric matrix. The silica nanoparticles were functionalized by mercaptopropyl(F1, IEC=0), propylsulfonic acid(F2, IEC= 2.71), and sulfonic acid(F3, IEC=2.84). The properties of prepared membranes were investigated by varying the loadings of functionalized silica nanoparticles. Applying functionalized nanoparticles provides additional ion exchange groups and enhances water contents as well as conductivities and permselectivities of the membranes. The maximum IEC of 1.9 meq.g^-1 was obtained for the membrane having 3 wt% F3 nanoparticles and the maximum conductivity of 0.237 S·cm^-1 was achieved for the membrane having 2 wt% F3 nanoparticles, which were 19.6% and 64% higher than the corresponding values for s PES membrane, respectively. The excellent properties of the nanocomposite cation-exchange membranes make them appropriate candidates for electrodialysis and desalination processes.展开更多
Actively tunable acoustic metamaterials have attracted ever increasing attention.However,their tunable frequency range is quite narrow(tens of Hz)even under ultrahigh applied voltage(about 1,000 V).Here,we report a su...Actively tunable acoustic metamaterials have attracted ever increasing attention.However,their tunable frequency range is quite narrow(tens of Hz)even under ultrahigh applied voltage(about 1,000 V).Here,we report a superbroad-band actively tunable acoustic metamaterials with the bandwidth over 400 Hz under a low voltage.In the actively tunable acoustic metamaterials,the acoustic membrane is a laminated nanocomposite consisting of a poly(ethylene terephthalate)(PET)and super-aligned carbon nanotube(CNT)drawn from CN T forest array.The laminated nanocomposite membrane exhibits adjustable acoustic properties,whose modulus can be adjusted by applying external electric field.The maximum frequency bandwidth of PET/CN T nanocomposite membrane reaches 419 Hz when applying an external DC voltage of 60 V.Our actively tunable acoustic metamaterials with superbroad-band and lightweight show very promising foreground in noise reduction applications.展开更多
Herein, the fabrication of cellulose acetate (CA) silica-based nanocomposite membranes via the dry-wetphase inversion procedure for water desalination was investigated. The modified and unmodified silicananoparticles ...Herein, the fabrication of cellulose acetate (CA) silica-based nanocomposite membranes via the dry-wetphase inversion procedure for water desalination was investigated. The modified and unmodified silicananoparticles (MSNPs and SNPs) were prepared by the sol-gel technique. The effect of the SNPs andMSNPs was investigated on the CA membrane's properties and their performance for water desalination.The CA nanocomposite membranes were characterized to study their structure, hydrophilicity, andmorphology. The fabricated nanocomposite membranes showed hydrophilic surface properties. Theperformance of reverse osmosis (RO) membranes was measured using a crossflow RO unit at 10 bar(1 bar = 0.1 MPa). The membrane with 10 mg of SNPs enhanced permeate water flux compared to thepristine CA membrane by 1.6 L/(m2·h). The effect of MSNPs on the nanocomposites' performance waslower than their counterpart in the case of adding SNPs. The membrane with 30 mg of MSNPs showedthe highest permeate water flux among other nanocomposite membranes with a value oAQSf 35.7 L/(m2·h)at 24 bar.展开更多
Metal organic framework(MOF)incorporated thin-film nanocomposite(TFN)membranes have the potential to enhance the removal of endocrine disrupting compounds(EDCs).In MOF-TFN membranes,water transport nanochannels includ...Metal organic framework(MOF)incorporated thin-film nanocomposite(TFN)membranes have the potential to enhance the removal of endocrine disrupting compounds(EDCs).In MOF-TFN membranes,water transport nanochannels include(i)pores of polyamide layer,(ii)pores in MOFs and(iii)channels around MOFs(polyamide-MOF interface).However,information on how to tune the nanochannels to enhance EDCs rejection is scarce,impeding the refinement of TFN membranes toward efficient removal of EDCs.In this study,by changing the polyamide properties,the water transport nanochannels could be confined primarily in pores of MOFs when the polyamide layer became dense.Interestingly,the improved rejection of EDCs was dependent on the water transport channels of the TFN membrane.At low monomer concentration(i.e.,loose polyamide structure),the hydrophilic nanochannels of MIL-101(Cr)in the polyamide layer could not dominate the membrane separation performance,and hence the extent of improvement in EDCs rejection was relatively low.In contrast,at high monomer concentration(i.e.,dense polyamide structure),the hydrophilic nanochannels of MIL-101(Cr)were responsible for the selective removal of hydrophobic EDCs,demonstrating that the manipulation of water transport nanochannels in the TFN membrane could successfully overcome the permeability and EDCs rejection trade-off.Our results highlight the potential of tuning primary selective nanochannels of MOF-TFN membranes for the efficient removal of EDCs.展开更多
Conventional polymeric membranes face several limitations,such as the trade-off between permeability and selectivity,and physical aging or membrane fouling.In this case,fabrication of composite membranes,usually inclu...Conventional polymeric membranes face several limitations,such as the trade-off between permeability and selectivity,and physical aging or membrane fouling.In this case,fabrication of composite membranes,usually including mixed matrix membranes(MMMs)or thin film nanocomposite(TFN)membranes by introduction of porous materials as fillers has gained much attention.To achieve excellent membrane performance,it is of great importance to select proper porous materials to avoid agglomeration or precipitation during the composite membrane fabrication processes.Metal-organic cages(MOCs)have been explored as additives for the fabrication of defectfree composite membranes owing to their diversified topologies,well-defined pore structures,nanoscale size,and excellent solubility.This review mainly focuses on the recent advances in applications of MOCs for membrane separation,including synthetic artificial channels,reverse osmosis,nanofiltration,pervaporation and gas separation.Besides,two types of MOCs that have been extensively investigated for composite membrane fabrication are also highlighted.Furthermore,challenges and possible directions are also discussed in details,hoping to provide insightful guidance on the development of more MOC-based membranes with impressive separation performance.展开更多
For the first time the preparation of the N-doped TiO2-coated NaY zeolite membrane(N-doped TiO2/NaY zeolite membrane) as an electrode material for photoelectrocatalysis has been achieved and reported.The XRD, SEM, U...For the first time the preparation of the N-doped TiO2-coated NaY zeolite membrane(N-doped TiO2/NaY zeolite membrane) as an electrode material for photoelectrocatalysis has been achieved and reported.The XRD, SEM, UV–vis and XPS techniques were used to characterize the structure of the N-doped TiO2/NaY zeolite membrane. The results verified that the surface of the N-doped TiO2/NaY zeolite membrane was coated by TiO2 nanoparticles of ca. 20 nm size and exhibited a distinct red-shift in the UV–vis spectra compared to N-doped TiO2. The photoelectrocatalysis performance of the N-doped TiO2/NaY zeolite membrane electrode was evaluated by phenol degradation. The results revealed it is a promising novel electrode material for application of photoelectrocatalysis in the removal of organic contaminants in waste water.展开更多
基金the National Natural Science Foundation of China(22271022)Hubei Three Gorges Laboratory(SK212001).
文摘Metal-organic frameworks(MOFs)have gained attention in the development of MOFs/polymer hybrid membranes for pervaporation.However,the agglomeration of MOFs particles and interfacial defects limit its further application.In this study,we present a novel approach to fabricate a ZIF-8@PEBAX/PVDF nanocomposite membrane for removing thiophene from the model gasoline by combination of selfassembly and in-situ growth.Firstly,a PVDF supporting membrane was modified to have a negative charge.Next,positively charged zinc ions were attracted onto the negatively charged PVDF supporting membrane through electrostatic interaction.Afterwards,the Zinc ions deposited PVDF membrane was immersed into dimethylimidazole solution to form a uniform ZIF-8 layer.Finally,the ZIF-8 layer was coated with poly(ether-block-amide)(PEBAX)using the pouring method.Experimental results showed that the separating efficiency of the ZIF-8@PEBAX/PVDF nanocomposite membrane was improved significantly compared to that of pristine PEBAX membrane.The optimal permeation flux and enrichment factor of membrane were 27.80 kg(m^(2)h)^(-1)and 6.9,respectively.
文摘In this investigation, polymeric nanocomposite membranes(PNMs) were prepared via incorporating zinc oxide(ZnO) into poly(ether-block-amide)(PEBAX-1074) polymer matrix with different loadings. The neat membrane and nanocomposite membranes were prepared via solution casting and solution blending methods, respectively. The fabricated membranes were characterized by field emission scanning electron microscopy(FESEM) to survey cross-sectional morphologies and thermal gravimetric analysis(TGA)to study thermal stability. Fourier transform infrared(FT-IR) and X-ray diffraction(XRD) analyses were also employed to identify variations of the chemical bonds and crystal structure of the membranes, respectively. Permeation of pure gases, CO, CHand Nthrough the prepared neat and nanocomposite membranes was studied at pressures of 3–18 bar and temperature of 25 °C. The obtained results showed that the fabricated nanocomposite membranes exhibit better separation performance compared to the neat PEBAX membrane in terms of both permeability and selectivity. As an example, at temperature of 25 °C and pressure of 3 bar, COpermeability, ideal CO/CHand CO/Nselectivity values for the neat PEBAX membrane are 110.67 Barrer, 11.09 and 50.08, respectively, while those values are 152.27 Barrer,13.52 and 62.15 for PEBAX/ZnO nanocomposite membrane containing 8 wt% ZnO.
基金Supported by the National Natural Science Foundation of China(Nos.20635020 and 20805025)Doctorial Foundation of the Ministry of Education of China(No.20060426001) Doctorial Fund of Qingdao University of Science and Technology, China(No.0022278)
文摘The Au-Pt alloy nanoparticles(Au-PtNPs) were electrochemically deposited on the surface of polyaniline nanotube(nanoPAN) and chitosan(CS) modified glassy carbon electrode(GCE). The electrochemical behavior of lincomycin at Au-PtNPs/nanoPAN/CS modified GCE was investigated by cyclic voltammetry, linear sweep voltammetry and chronocoulometry. Cyclic voltammetric experiments show that lincomycin at the nanocomposite membrane modified electrode exhibited a pair of quasi-reversible redox peaks in pH=6.0 PBS. The membrane could accelerate the electron transfer of lincomycin on the electrode and significantly enhance the peak current. In a range of 3.0-100.0 mg/L, the reductive peak current of lincomycin at 0.42 V was linearly related to its concentration and the linear regression equation was ip,c=0.2703ρ-0.0042(ip, c: μA; ρ: mg/L; r=0.998, n=7) with a detection limit of 1.0 mg/L(S/N =3). Compared with other methods, this method exhibited many advantages such as high sensitivity, selectivity, wide linear range and low detection limit. The method was used to determine the content of lincomycin in injections commercially available with satisfactory results. Some electrochemical parameters involved in the redox reaction of lincomycin, such as parameter of kinetic ha, standard rate constant ks and the number of H^+, were also calculated.
基金This work was financially supported by the Australian Research Council Discovery Program(DP190103290)Australian Research Council Discovery Early Career Researcher Award scheme(DE150101617 and DE140100716)+1 种基金We also thank the Australian Synchrotron for the SAXS/WAXS beamline(Beam time ID:M13292)D.G.is grateful to the Australian Research Council Laureate Fellowship FL160100089 and QUT Project No.323000-0355/51.
文摘Waste heat management holds great promise to create a sustainable and energy-efficient society as well as contributes to the alleviation of global warming.Harvesting and converting this waste heat in order to improve the efficiency is a major challenge.Here we report biomimetic nacre-like hydroxyl-functionalized boron nitride(BN)-polyimide(PI)nanocomposite membranes as efficient 2D in-plane heat conductor to dissipate and convert waste heat at high temperature.The hierarchically layered nanostructured membrane with oriented BN nanosheets gives rise to a very large anisotropy in heat transport properties,with a high in-plane thermal conductivity(TC)of 51 Wm^(-1) K^(-1) at a temperature of~300 C,7314%higher than that of the pure polymer.The membrane also exhibits superior thermal stability and fire resistance,enabling its workability in a hot environment.In addition to cooling conventional exothermic electronics,the large TC enables the membrane as a thin and 2D anisotropic heat sink to generate a large temperature gradient in a thermoelectric module(△T=23 ℃)through effective heat diffusion on the cold side under 220 C heating.The waste heat under high temperature is therefore efficiently harvested and converted to power electronics,thus saving more thermal energy by largely decreasing consumption.
文摘Transport of copper ions through nanocomposite chitosan/polyvinyl alcohol thin adsorptive membranes has been mathematically investigated in the current study. Unsteady-state diffusive transport model was coupled with the Freundlich isotherm to predict the concentration of the ions in dialysis permeation operation. Pristine model was not successful in predicting the experimental data based upon its low coefficients of determination(0.1
文摘Modified clay/polyethersulfone(PES) mixed matrix membranes(MMMs) were prepared by acid activated montmorillonite(AA-MMT) with different concentrations and used to eliminate dyes and remove heavy metals from aqueous solution. The morphology and physiochemical properties of prepared clay nanoparticles and MMMs were characterized using X-ray diffraction(XRD), Fourier transform infrared(FTIR) spectroscopy, scanning electron microscopy(SEM), enegy dispersive X-ray(EDX) spectroscopy, Brunauer-Emmett-Teller(BET) analysis, atomic force microscopy(AFM), contact angle measurement and fouling studies. The filtration study showed that removal of dyes and heavy metals was strongly dependent on p H so that dyes with positive and negative charges showed different separation efficiency in acidic and alkaline conditions. The modified membranes possessed better heavy metal removal in acidic and alkaline p Hs. When the rejection of heavy metals was measured in an alkaline environment, it was observed that the rejection had a great increase compared to the neutral values for Zn^(2+) and Ni^(2+) ions, while rejection of Cu^(2+) and Cd^(2+) did not undergo significant changes. So it can be concluded that modified membranes show good selectivity for elimination of Zn^(2+) and Ni^(2+) ions with respect to other cations.
文摘Nanocomposite cation exchange membranes(CEMs) were prepared by adding various loadings of functionalized silica nanoparticles to the sulfonated polyethersulfone(s PES) polymeric matrix. The silica nanoparticles were functionalized by mercaptopropyl(F1, IEC=0), propylsulfonic acid(F2, IEC= 2.71), and sulfonic acid(F3, IEC=2.84). The properties of prepared membranes were investigated by varying the loadings of functionalized silica nanoparticles. Applying functionalized nanoparticles provides additional ion exchange groups and enhances water contents as well as conductivities and permselectivities of the membranes. The maximum IEC of 1.9 meq.g^-1 was obtained for the membrane having 3 wt% F3 nanoparticles and the maximum conductivity of 0.237 S·cm^-1 was achieved for the membrane having 2 wt% F3 nanoparticles, which were 19.6% and 64% higher than the corresponding values for s PES membrane, respectively. The excellent properties of the nanocomposite cation-exchange membranes make them appropriate candidates for electrodialysis and desalination processes.
基金the National Natural Science Foundation of China(NSFC)(Nos.52002201,52008223,51772063)Open Fund of innovation institute for Sustainable Maritime Architecture Research and Technology,Qingdao University of Technology(Nu.2020-035)Shenzhen Science and Technology Program(No.KQTD2016112814303055).
文摘Actively tunable acoustic metamaterials have attracted ever increasing attention.However,their tunable frequency range is quite narrow(tens of Hz)even under ultrahigh applied voltage(about 1,000 V).Here,we report a superbroad-band actively tunable acoustic metamaterials with the bandwidth over 400 Hz under a low voltage.In the actively tunable acoustic metamaterials,the acoustic membrane is a laminated nanocomposite consisting of a poly(ethylene terephthalate)(PET)and super-aligned carbon nanotube(CNT)drawn from CN T forest array.The laminated nanocomposite membrane exhibits adjustable acoustic properties,whose modulus can be adjusted by applying external electric field.The maximum frequency bandwidth of PET/CN T nanocomposite membrane reaches 419 Hz when applying an external DC voltage of 60 V.Our actively tunable acoustic metamaterials with superbroad-band and lightweight show very promising foreground in noise reduction applications.
文摘Herein, the fabrication of cellulose acetate (CA) silica-based nanocomposite membranes via the dry-wetphase inversion procedure for water desalination was investigated. The modified and unmodified silicananoparticles (MSNPs and SNPs) were prepared by the sol-gel technique. The effect of the SNPs andMSNPs was investigated on the CA membrane's properties and their performance for water desalination.The CA nanocomposite membranes were characterized to study their structure, hydrophilicity, andmorphology. The fabricated nanocomposite membranes showed hydrophilic surface properties. Theperformance of reverse osmosis (RO) membranes was measured using a crossflow RO unit at 10 bar(1 bar = 0.1 MPa). The membrane with 10 mg of SNPs enhanced permeate water flux compared to thepristine CA membrane by 1.6 L/(m2·h). The effect of MSNPs on the nanocomposites' performance waslower than their counterpart in the case of adding SNPs. The membrane with 30 mg of MSNPs showedthe highest permeate water flux among other nanocomposite membranes with a value oAQSf 35.7 L/(m2·h)at 24 bar.
基金We appreciate the financial support from the National Natural Science Foundation of China(Grant Nos.51838009 and 51925806)Science&Technology Commission of Shanghai Municipality(Nos.18DZ1206703 and 19DZ1204503).
文摘Metal organic framework(MOF)incorporated thin-film nanocomposite(TFN)membranes have the potential to enhance the removal of endocrine disrupting compounds(EDCs).In MOF-TFN membranes,water transport nanochannels include(i)pores of polyamide layer,(ii)pores in MOFs and(iii)channels around MOFs(polyamide-MOF interface).However,information on how to tune the nanochannels to enhance EDCs rejection is scarce,impeding the refinement of TFN membranes toward efficient removal of EDCs.In this study,by changing the polyamide properties,the water transport nanochannels could be confined primarily in pores of MOFs when the polyamide layer became dense.Interestingly,the improved rejection of EDCs was dependent on the water transport channels of the TFN membrane.At low monomer concentration(i.e.,loose polyamide structure),the hydrophilic nanochannels of MIL-101(Cr)in the polyamide layer could not dominate the membrane separation performance,and hence the extent of improvement in EDCs rejection was relatively low.In contrast,at high monomer concentration(i.e.,dense polyamide structure),the hydrophilic nanochannels of MIL-101(Cr)were responsible for the selective removal of hydrophobic EDCs,demonstrating that the manipulation of water transport nanochannels in the TFN membrane could successfully overcome the permeability and EDCs rejection trade-off.Our results highlight the potential of tuning primary selective nanochannels of MOF-TFN membranes for the efficient removal of EDCs.
基金the National Natural Science Foundation of China(22001122 and 21878149)the National Science Fund for Distinguished Young Scholars(22125804)。
文摘Conventional polymeric membranes face several limitations,such as the trade-off between permeability and selectivity,and physical aging or membrane fouling.In this case,fabrication of composite membranes,usually including mixed matrix membranes(MMMs)or thin film nanocomposite(TFN)membranes by introduction of porous materials as fillers has gained much attention.To achieve excellent membrane performance,it is of great importance to select proper porous materials to avoid agglomeration or precipitation during the composite membrane fabrication processes.Metal-organic cages(MOCs)have been explored as additives for the fabrication of defectfree composite membranes owing to their diversified topologies,well-defined pore structures,nanoscale size,and excellent solubility.This review mainly focuses on the recent advances in applications of MOCs for membrane separation,including synthetic artificial channels,reverse osmosis,nanofiltration,pervaporation and gas separation.Besides,two types of MOCs that have been extensively investigated for composite membrane fabrication are also highlighted.Furthermore,challenges and possible directions are also discussed in details,hoping to provide insightful guidance on the development of more MOC-based membranes with impressive separation performance.
基金supported by the Talent Introduction Fund of Yangzhou University(2012),Jiangsu Province Science and Technology Support Project(No.BE2014613)Six Big Peak Talent in Jiangsu Province(No.2014-XCL-013)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘For the first time the preparation of the N-doped TiO2-coated NaY zeolite membrane(N-doped TiO2/NaY zeolite membrane) as an electrode material for photoelectrocatalysis has been achieved and reported.The XRD, SEM, UV–vis and XPS techniques were used to characterize the structure of the N-doped TiO2/NaY zeolite membrane. The results verified that the surface of the N-doped TiO2/NaY zeolite membrane was coated by TiO2 nanoparticles of ca. 20 nm size and exhibited a distinct red-shift in the UV–vis spectra compared to N-doped TiO2. The photoelectrocatalysis performance of the N-doped TiO2/NaY zeolite membrane electrode was evaluated by phenol degradation. The results revealed it is a promising novel electrode material for application of photoelectrocatalysis in the removal of organic contaminants in waste water.