A novel method for preparing silver nanoelectrode ensembles (SNEEs) and gold nanoelectrode ensembles (GNEEs) has been developed. Silver colloid particles were first absorbed to the gold electrode surface to form a mo...A novel method for preparing silver nanoelectrode ensembles (SNEEs) and gold nanoelectrode ensembles (GNEEs) has been developed. Silver colloid particles were first absorbed to the gold electrode surface to form a monolayer silver colloid. N-hexadecyl mercaptan was then assembled on the electrode to form a thiol monolayer on which hydrophilic ions cannot be transfered. The SNEEs was prepared by removing thiol from silver colloid surface through applying an AC voltage with increasing frequency at 0.20 V (vs. SCE). Finally, GNEEs was obtained by immersing a SNEEs into 6 mol/L HNO3 to remove the silver colloid particles. By comparison with other methods such as template method etc., this method enjoys some advantages of lower resistance, same diameter, easy preparation, controllable size and density.展开更多
文摘A novel method for preparing silver nanoelectrode ensembles (SNEEs) and gold nanoelectrode ensembles (GNEEs) has been developed. Silver colloid particles were first absorbed to the gold electrode surface to form a monolayer silver colloid. N-hexadecyl mercaptan was then assembled on the electrode to form a thiol monolayer on which hydrophilic ions cannot be transfered. The SNEEs was prepared by removing thiol from silver colloid surface through applying an AC voltage with increasing frequency at 0.20 V (vs. SCE). Finally, GNEEs was obtained by immersing a SNEEs into 6 mol/L HNO3 to remove the silver colloid particles. By comparison with other methods such as template method etc., this method enjoys some advantages of lower resistance, same diameter, easy preparation, controllable size and density.