Nanostructures/patterns formed by biomolecules can produce different physicochemical properties in terms of hydrophobicity, zeta-potential, color, etc., which play paramount roles in life. Peptides, as the main bio-bu...Nanostructures/patterns formed by biomolecules can produce different physicochemical properties in terms of hydrophobicity, zeta-potential, color, etc., which play paramount roles in life. Peptides, as the main bio-building blocks, can form nanostructures with different functions,either in solutions or on interfaces. Previously, we synthesized a short peptide with the inspiration of an Alzheimer’s disease-related peptide: amyloid β peptide(A-p),namely GAV-9, which can epitaxially self-assemble into regular nanofilaments on liquid-solid interfaces, and it was found that both the hydrophobicity and charge state of the interfaces can significantly influence its assembling behavior. It was also reported that another A-β-containing dipeptide, FF,can self-assemble into nanostructures in solutions. Owing to the close relationship between these two short peptides, it is interesting to conjugate them into a de novo peptide with two separated structural domains and study its self-assembling behavior. To this end, herein we have synthesized the GAV-FF peptide with a sequence of NH2-VGGAVVAGVFF-CONH2 and verified its selfassembling property using the in situ liquid-phase atomic force microscopy. The results show that the GAV-FF peptide can self-assemble into nanofilaments both in solutions and on aqueous-solid interfaces, but with different morphologies. The FF domain accelerates the template-assisted self-assembling(TASA) process of the GAV domain, which in return enhances the solubility of FF in aqueous solutions and further participates in the fibrillization of FF. The current results could help deepen the understanding of the aggregation mechanism of diseaserelated peptides and could also shed light on the strategies to create artificial bio-functional nanostructures/patterns,which hold a significant potential for biomedical applications.展开更多
Despite notable progress in cancer therapy,metastatic diseases continue to be the primary cause of cancer-related mortality.Multi-walled carbon nanotubes(MWCNTs)can enter tissues and cells and interfere with the dynam...Despite notable progress in cancer therapy,metastatic diseases continue to be the primary cause of cancer-related mortality.Multi-walled carbon nanotubes(MWCNTs)can enter tissues and cells and interfere with the dynamics of the cytoskeletal nanofilaments biomimetically.This endows them with intrinsic anti-tumoral effects comparable to those of microtubule-binding chemotherapies such as Taxol®.In this study,our focus was on exploring the potential of oxidized MWCNTs in selectively targeting the vascular endothelial growth factor receptor(VEGFR).Our objective was to evaluate their effectiveness in inhibiting metastatic growth by inducing anti-proliferative,anti-migratory,and cytotoxic effects on both cancer and tumor microenvironment cells.Our findings demonstrated a significant reduction of over 80%in malignant melanoma lung metastases and a substantial enhancement in overall animal welfare following intravenous administration of the targeted biodegradable MWCNTs.Furthermore,the combination of these nanomaterials with the conventional chemotherapy agent Taxol®yielded a remarkable 90%increase in the antimetastatic effect.These results highlight the promising potential of this combined therapeutic approach against metastatic disease and are of paramount importance as metastasis is responsible for nearly 60,000 deaths each year.展开更多
基金the Program Funded by the University for Fostering Distinguished Young Scholarsthe National Natural Science Foundation of China(No.51763019,U1832125)+3 种基金the China Postdoctoral Science Foundation(No.2018M630937)the Grassland Talents Program of Inner Mongolia Autonomous Regionthe Distinguished Young Scholars Foundation of Inner Mongolia Autonomous Regionthe Young Leading Talents of Science and Technology Program of Inner Mongolia Autonomous Region
文摘Nanostructures/patterns formed by biomolecules can produce different physicochemical properties in terms of hydrophobicity, zeta-potential, color, etc., which play paramount roles in life. Peptides, as the main bio-building blocks, can form nanostructures with different functions,either in solutions or on interfaces. Previously, we synthesized a short peptide with the inspiration of an Alzheimer’s disease-related peptide: amyloid β peptide(A-p),namely GAV-9, which can epitaxially self-assemble into regular nanofilaments on liquid-solid interfaces, and it was found that both the hydrophobicity and charge state of the interfaces can significantly influence its assembling behavior. It was also reported that another A-β-containing dipeptide, FF,can self-assemble into nanostructures in solutions. Owing to the close relationship between these two short peptides, it is interesting to conjugate them into a de novo peptide with two separated structural domains and study its self-assembling behavior. To this end, herein we have synthesized the GAV-FF peptide with a sequence of NH2-VGGAVVAGVFF-CONH2 and verified its selfassembling property using the in situ liquid-phase atomic force microscopy. The results show that the GAV-FF peptide can self-assemble into nanofilaments both in solutions and on aqueous-solid interfaces, but with different morphologies. The FF domain accelerates the template-assisted self-assembling(TASA) process of the GAV domain, which in return enhances the solubility of FF in aqueous solutions and further participates in the fibrillization of FF. The current results could help deepen the understanding of the aggregation mechanism of diseaserelated peptides and could also shed light on the strategies to create artificial bio-functional nanostructures/patterns,which hold a significant potential for biomedical applications.
基金funded by ISCIII Projects ref.PI19/00349,PI22/00030,PI23/00261 co-funded by ERDF/ESF,“Investing in your future”,Ministerio de Ciencia e Innovación ref.TED2021-129248B-100the Agence Nationale de la Recherche(ANR)through the LabEx project Chemistry of Complex Systems(ANR-10-LABX-0026_CSC)+1 种基金funding from the European Union’s Horizon Europe Research and Innovation Program(Marie Skłodowska-Curie Actions-Doctoral Networks)under the grant agreement 101073025(Melomanes)LGH thanks the Ministry of Innovation and Science of Spain for her Juan de la Cierva Incorporación grant(IJC2020-043746-I).
文摘Despite notable progress in cancer therapy,metastatic diseases continue to be the primary cause of cancer-related mortality.Multi-walled carbon nanotubes(MWCNTs)can enter tissues and cells and interfere with the dynamics of the cytoskeletal nanofilaments biomimetically.This endows them with intrinsic anti-tumoral effects comparable to those of microtubule-binding chemotherapies such as Taxol®.In this study,our focus was on exploring the potential of oxidized MWCNTs in selectively targeting the vascular endothelial growth factor receptor(VEGFR).Our objective was to evaluate their effectiveness in inhibiting metastatic growth by inducing anti-proliferative,anti-migratory,and cytotoxic effects on both cancer and tumor microenvironment cells.Our findings demonstrated a significant reduction of over 80%in malignant melanoma lung metastases and a substantial enhancement in overall animal welfare following intravenous administration of the targeted biodegradable MWCNTs.Furthermore,the combination of these nanomaterials with the conventional chemotherapy agent Taxol®yielded a remarkable 90%increase in the antimetastatic effect.These results highlight the promising potential of this combined therapeutic approach against metastatic disease and are of paramount importance as metastasis is responsible for nearly 60,000 deaths each year.