The development of various artificial electronics and machines would explosively increase the amount of information and data,which need to be processed via in-situ remediation.Bioinspired synapse devices can store and...The development of various artificial electronics and machines would explosively increase the amount of information and data,which need to be processed via in-situ remediation.Bioinspired synapse devices can store and process signals in a parallel way,thus improving fault tolerance and decreasing the power consumption of artificial systems.The organic field effect transistor(OFET)is a promising component for bioinspired neuromorphic systems because it is suitable for large-scale integrated circuits and flexible devices.In this review,the organic semiconductor materials,structures and fabrication,and different artificial sensory perception systems functions based on neuromorphic OFET devices are summarized.Subsequently,a summary and challenges of neuromorphic OFET devices are provided.This review presents a detailed introduction to the recent progress of neuromorphic OFET devices from semiconductor materials to perception systems,which would serve as a reference for the development of neuromorphic systems in future bioinspired electronics.展开更多
ZnO nanosheets with thickness of a few nanometers are prepared by vapor transport and condensation method, and their structure and optical properties are well characterized. Field effect transistor (FET) and ultravi...ZnO nanosheets with thickness of a few nanometers are prepared by vapor transport and condensation method, and their structure and optical properties are well characterized. Field effect transistor (FET) and ultraviolet (UV) sensors are fabricated based on the ZnO nanosheets. Due to the peculiar structure of nanosheet, the FET shows n-type enhanced mode behavior and high electrical performance, and its field-effect mobility and on/off cur- rent ratio can reach 256 cm2/(V.s) and ~10^8, respectively. Moreover, the response of UV sensors can also be remarkably improved to ~3 × 10^8. The results make the ZnO nanosheets be a good material for the applications in nanoelectronic and optoelectronic devices.展开更多
As a promising ultra-wide bandgap semiconductor, gallium oxide(Ga_2O_3) has attracted increasing attention in recent years. The high theoretical breakdown electrical field(8 MV/cm), ultra-wide bandgap(~ 4.8 eV) and l...As a promising ultra-wide bandgap semiconductor, gallium oxide(Ga_2O_3) has attracted increasing attention in recent years. The high theoretical breakdown electrical field(8 MV/cm), ultra-wide bandgap(~ 4.8 eV) and large Baliga's figure of merit(BFOM) of Ga_2O_3 make it a potential candidate material for next generation high-power electronics, including diode and field effect transistor(FET). In this paper, we introduce the basic physical properties of Ga_2O_3 single crystal, and review the recent research process of Ga_2O_3 based field effect transistors. Furthermore, various structures of FETs have been summarized and compared, and the potential of Ga_2O_3 is preliminary revealed. Finally, the prospect of the Ga_2O_3 based FET for power electronics application is analyzed.展开更多
We use the extended gate field effect transistor (EGFET)as the structure of the chlorine ion sensor,and the chlorine ion ionophores (ETH9033 and TDDMAC1)are incorporated into solvent polymeric membrane (PVC/DOS),then ...We use the extended gate field effect transistor (EGFET)as the structure of the chlorine ion sensor,and the chlorine ion ionophores (ETH9033 and TDDMAC1)are incorporated into solvent polymeric membrane (PVC/DOS),then the chlorine ion selective membrane is formed on the sensing window,and the fabrication of the EGFET chlorine ion sensing device is completed.The surface potential on the sensing membrane of the EGFET chlorine ion sensing device will be changed in the different chlorine ion concentration solutions,then changes further gate voltage and drain current to detect chlorine ion concentration.We will study non-ideal effects such as temperature,hysteresis and drift effects for the EGFET chlorine ion sensing device in this paper,these researches will help us to improve the sensing characteristics of the EGFET chlorine ion sensing device.展开更多
The nano-titanium dioxide (nano-TiO_2) sensing membrane,fabricated by sol-gel technology,was used as the pH-sensing layer of the extended gate field effect transistor (EGFET) device.The objective of this research is t...The nano-titanium dioxide (nano-TiO_2) sensing membrane,fabricated by sol-gel technology,was used as the pH-sensing layer of the extended gate field effect transistor (EGFET) device.The objective of this research is the preparation of titanium dioxide materials by sol-gel method using Ti(OBu)_4 as the precursor.In this study,we fabricated a nano-titanium dioxide sensing layer on the ITO glass by dip coating.In order to examine the sensitivity of the nano-TiO_2 films applied to the EGFET devices,we adopted the ITO glass as substrate,and measured theⅠ_(DS)-Ⅴ_G curves of the nano-titanium dioxide separative structure EGFET device in the pH buffer solutions that have different pH values by the Keithley 236 Instrument.By the experimental results,we can obtain the pH sensitivities of the EGFET with nano-TiO_2 sensing membrane prepared by sol-gel method,which is 59.86mV/pH from pH 1 to pH 9.展开更多
We use the carbon nanotube (CNT) as the material of the pH sensing layer of the separative structure for the extended gate H^+-ion sensitive field effect transistor (EGFET) device.The CNT paste was prepared with CNT p...We use the carbon nanotube (CNT) as the material of the pH sensing layer of the separative structure for the extended gate H^+-ion sensitive field effect transistor (EGFET) device.The CNT paste was prepared with CNT powder,Ag powder,silicagel,the di-n-butyl phthalate and the toluene solvents by appropriate ratio,then immobilized on the silicon substrate to form the carbon nanotube sensing layer.We measured theⅠ_(DS)-Ⅴ_G curves of the carbon nanotube separative structure EGFET device in the different pH buffer solutions by the Keithley 236Ⅰ-Ⅴmeasurement system.According to the experimental results,we can obtain the pH sensitivities of the carbon nanotube separative structure EGFET device,which is 62.54mV/pH from pH1 to pH13.展开更多
In this manuscript,the perovskite-based metal–oxide–semiconductor field effect transistors(MOSFETs) with phenylC61-butyric acid methylester(PCBM) layers are studied.The MOSFETs are fabricated on perovskites,and ...In this manuscript,the perovskite-based metal–oxide–semiconductor field effect transistors(MOSFETs) with phenylC61-butyric acid methylester(PCBM) layers are studied.The MOSFETs are fabricated on perovskites,and characterized by photoluminescence spectra(PL),x-ray diffraction(XRD),and x-ray photoelectron spectroscopy(XPS).With PCBM layers,the current–voltage hysteresis phenomenon is effetely inhibited,and both the transfer and output current values increase.The band energy diagrams are proposed,which indicate that the electrons are transferred into the PCBM layer,resulting in the increase of photocurrent.The electron mobility and hole mobility are extracted from the transfer curves,which are about one order of magnitude as large as those of PCBM deposited,which is the reason why the electrons are transferred into the PCBM layer and the holes are still in the perovskites,and the effects of ionized impurity scattering on carrier transport become smaller.展开更多
A facile approach was demonstrated for fabricating high-performance nonvolatile memory devices based on ferroelectric-gate field effect transistors using a p-type Si nanowire coated with omega-shaped gate organic ferr...A facile approach was demonstrated for fabricating high-performance nonvolatile memory devices based on ferroelectric-gate field effect transistors using a p-type Si nanowire coated with omega-shaped gate organic ferroelectric poly(vinylidene fluoride-trifluoroethylene)(P(VDF-Tr FE)). We overcame the interfacial layer problem by incorporating P(VDF-Tr FE) as a ferroelectric gate using a low-temperature fabrication process. Our memory devices exhibited excellent memory characteristics with a low programming voltage of ±5 V, a large modulation in channel conductance between ON and OFF states exceeding 105, a long retention time greater than 3 9 104 s, and a high endurance of over 105 programming cycles while maintaining an ION/IOFFratio higher than 102.展开更多
Gallium oxide(Ga_2O_3), a typical ultra wide bandgap semiconductor, with a bandgap of ~4.9 e V, critical breakdown field of 8 MV/cm, and Baliga's figure of merit of 3444, is promising to be used in high-power and ...Gallium oxide(Ga_2O_3), a typical ultra wide bandgap semiconductor, with a bandgap of ~4.9 e V, critical breakdown field of 8 MV/cm, and Baliga's figure of merit of 3444, is promising to be used in high-power and high-voltage devices.Recently, a keen interest in employing Ga_2O_3 in power devices has been aroused. Many researches have verified that Ga_2O_3 is an ideal candidate for fabricating power devices. In this review, we summarized the recent progress of field-effect transistors(FETs) and Schottky barrier diodes(SBDs) based on Ga_2O_3, which may provide a guideline for Ga_2O_3 to be preferably used in power devices fabrication.展开更多
Two-dimensional(2D) materials have attracted extensive interest due to their excellent electrical, thermal,mechanical, and optical properties. Graphene has been one of the most explored 2D materials. However, its zero...Two-dimensional(2D) materials have attracted extensive interest due to their excellent electrical, thermal,mechanical, and optical properties. Graphene has been one of the most explored 2D materials. However, its zero band gap has limited its applications in electronic devices. Transition metal dichalcogenide(TMDC), another kind of 2D material,has a nonzero direct band gap(same charge carrier momentum in valence and conduction band) at monolayer state,promising for the efficient switching devices(e.g., field-effect transistors). This review mainly focuses on the recent advances in charge carrier mobility and the challenges to achieve high mobility in the electronic devices based on 2DTMDC materials and also includes an introduction of 2D materials along with the synthesis techniques. Finally, this review describes the possible methodology and future prospective to enhance the charge carrier mobility for electronic devices.展开更多
Field-effect transistors (FETs) for logic applications, graphene and MoS2, are discussed. These materials have based on two representative two-dimensional (2D) materials, drastically different properties and requi...Field-effect transistors (FETs) for logic applications, graphene and MoS2, are discussed. These materials have based on two representative two-dimensional (2D) materials, drastically different properties and require different consider- ations. The unique band structure of graphene necessitates engineering of the Dirac point, including the opening of the bandgap, the doping and the interface, before the graphene can be used in logic applications. On the other hand, MoS2 is a semiconductor, and its electron transport depends heavily on the surface properties, the number of layers, and the carrier density. Finally, we discuss the prospects for the future developments in 2D material transistors.展开更多
The energy bandgap is an intrinsic character of semiconductors, which largely determines their properties. The ability to continuously and reversibly tune the bandgap of a single device during real time operation is o...The energy bandgap is an intrinsic character of semiconductors, which largely determines their properties. The ability to continuously and reversibly tune the bandgap of a single device during real time operation is of great importance not only to device physics but also to technological applications. Here we demonstrate a widely tunable bandgap of few-layer black phosphorus (BP) by the application of vertical electric field in dual-gated BP field-effect transistors. A total bandgap reduction of 124 meV is observed when the electrical displacement field is increased from 0.10 V/nm to 0.83 V/nm. Our results suggest appealing potential for few-layer BP as a tunable bandgap material in infrared optoelectronies, thermoelectric power generation and thermal imaging.展开更多
A vertical carbon nanotube field-effect transistor(CNTFET) based on silicon(Si) substrate has been proposed and simulated using a semi-classical theory. A single-walled carbon nanotube(SWNT) and an n-type Si nanowire ...A vertical carbon nanotube field-effect transistor(CNTFET) based on silicon(Si) substrate has been proposed and simulated using a semi-classical theory. A single-walled carbon nanotube(SWNT) and an n-type Si nanowire in series construct the channel of the transistor. The CNTFET presents ambipolar characteristics at positive drain voltage(Vd) and n-type characteristics at negative Vd. The current is significantly influenced by the doping level of n-Si and the SWNT band gap. The n-branch current of the ambipolar characteristics increases with increasing doping level of the n-Si while the p-branch current decreases. The SWNT band gap has the same influence on the p-branch current at a positive Vd and n-type characteristics at negative Vd. The lower the SWNT band gap, the higher the current. However, it has no impact on the n-branch current in the ambipolar characteristics. Thick oxide is found to significantly degrade the current and the subthreshold slope of the CNTFETs.展开更多
Various biaxial compressive strained GaSb p-channel metal-oxide-semiconductor field-effect transistors (MOSFETs) are experimentally and theoretically investigated, The biaxial compressive strained GaSb MOSFETs show ...Various biaxial compressive strained GaSb p-channel metal-oxide-semiconductor field-effect transistors (MOSFETs) are experimentally and theoretically investigated, The biaxial compressive strained GaSb MOSFETs show a high peak mobility of 638 cm2/V.s, which is 3.86 times of the extracted mobility of the fabricated GaSb MOSFETs without strain. Meanwhile, first principles calculations show that the hole effective mass of GaSb depends on the biaxial compressive strain. The biaxiai compressive strain brings a remarkable enhancement of the hole mobility caused by a significant reduction in the hole effective mass due to the modulation of the valence bands.展开更多
C60 field-effect transistor (OFET) with a mobility as high as 5.17 cm2/V.s is fabricated. In our experiment, an ultrathin pentacene passivation layer on poly-(methyl methacrylate) (PMMA) insulator and a bathophe...C60 field-effect transistor (OFET) with a mobility as high as 5.17 cm2/V.s is fabricated. In our experiment, an ultrathin pentacene passivation layer on poly-(methyl methacrylate) (PMMA) insulator and a bathophenanthroline (Bphen)/Ag bilayer electrode are prepared. The OFET shows a significant enhancement of electron mobility compared with the corresponding device with a single PMMA insultor and an Ag electrode. By analysing the C60 film with atomic force microscopy and X-ray diffraction techniques, it is shown that the pentacene passivation layer can contribute to C60 film growth with the large grain size and significantly improve crystallinity. Moreover, the Bphen buffer layer can reduce the electron contact barrier from Ag electrodes to C60 film efficiently.展开更多
Graphene has attracted enormous interests due to its unique physical, mechanical, and electrical properties. Specially, graphene-based field-effect transistors (FETs) have evolved rapidly and are now considered as a...Graphene has attracted enormous interests due to its unique physical, mechanical, and electrical properties. Specially, graphene-based field-effect transistors (FETs) have evolved rapidly and are now considered as an option for conventional silicon devices. As a critical step in the design cycle of modem IC products, compact model refers to the development of models for integrated semiconductor devices for use in circuit simulations. The purpose of this review is to provide a theoretical description of current compact model of graphene field-effect transistors. Special attention is devoted to the charge sheet model, drift-diffusion model, Boltzmann equation, density of states (DOS), and surface-potential-based compact model. Finally, an outlook of this field is briefly discussed.展开更多
We present the design consideration and fabrication of 4H-SiC trenched-and-implanted vertical junction field-effect transistors (TI-VJFETs). Different design factors, including channel width, channel doping, and mes...We present the design consideration and fabrication of 4H-SiC trenched-and-implanted vertical junction field-effect transistors (TI-VJFETs). Different design factors, including channel width, channel doping, and mesa height, are con- sidered and evaluated by numerical simulations. Based on the simulation result, normally-on and normally-off devices are fabricated. The fabricated device has a 12 μm thick drift layer with 8 × 10^15 cm^-3 N-type doping and 2.6 μm channel length. The normally-on device shows a 1.2 kV blocking capability with a minimum on-state resistance of 2.33 mΩ.cm2, while the normally-off device shows an on-state resistance of 3.85 mΩ.cm2. Both the on-state and the blocking performances of the device are close to the state-of-the-art values in this voltage range.展开更多
A power metal-oxide-semiconductor field-effect transistor(MOSFET) with dielectric trench is investigated to enhance the reversed blocking capability. The dielectric trench with a low permittivity to reduce the electri...A power metal-oxide-semiconductor field-effect transistor(MOSFET) with dielectric trench is investigated to enhance the reversed blocking capability. The dielectric trench with a low permittivity to reduce the electric field at reversed blocking state has been studied. To analyze the electric field, the drift region is segmented into four regions, where the conformal mapping method based on Schwarz–Christoffel transformation has been applied. According to the analysis, the improvement in the electric field for using the low permittivity trench is mainly due to the two electric field peaks generated in the drift region around this dielectric trench. The analytical results of the electric field and the potential models are in good agreement with the simulation results.展开更多
The electrical characteristics of a double-gate armchair silicene nanoribbon field-effect-transistor (DG ASiNR FET) are thoroughly investigated by using a ballistic quantum transport model based on non-equilibrium G...The electrical characteristics of a double-gate armchair silicene nanoribbon field-effect-transistor (DG ASiNR FET) are thoroughly investigated by using a ballistic quantum transport model based on non-equilibrium Green's function (NEGF) approach self-consistently coupled with a three-dimensional (3D) Poisson equation. We evaluate the influence of variation in uniaxial tensile strain, ribbon temperature and oxide thickness on the on-off current ratio, subthreshold swing, transconductance and the delay time of a 12-nm-length ultranarrow ASiNR FET. A novel two-parameter strain mag- nitude and temperature-dependent model is presented for designing an optimized device possessing balanced amelioration of all the electrical parameters. We demonstrate that employing HfO2 as the gate insulator can be a favorable choice and simultaneous use of it with proper combination of temperature and strain magnitude can achieve better device performance. Furthermore, a general model power (GMP) is derived which explicitly provides the electron effective mass as a function of the bandgap of a hydrogen passivated ASiNR under strain.展开更多
A top-contact organic field-effect transistor (OFET) is fabricated by adopting a pentacene/1,11-bis(di-4- tolylaminophenyl) cyclohexane (TAPC) heterojunction structure and inserting an MoO3 buffer layer between ...A top-contact organic field-effect transistor (OFET) is fabricated by adopting a pentacene/1,11-bis(di-4- tolylaminophenyl) cyclohexane (TAPC) heterojunction structure and inserting an MoO3 buffer layer between the TAPC organic semiconductor layer and the source/drain electrode. The performances of the heterojunction OFET, including output current, field-effect mobility, and threshed voltage~ are all significantly improved by introducing the MoO3 thin buffer layer. The performance improvement of the modified heterojunction OFET is attributed to a better contact formed at the Au/TAPC interface due to the MoO3 thin buffer layer, thereby leading to a remarkable reduction of the contact resistance at the metal/organic interface.展开更多
基金the National Natural Science Foundation of China(U21A20497)Singapore National Research Foundation Investigatorship(Grant No.NRF-NRFI08-2022-0009)。
文摘The development of various artificial electronics and machines would explosively increase the amount of information and data,which need to be processed via in-situ remediation.Bioinspired synapse devices can store and process signals in a parallel way,thus improving fault tolerance and decreasing the power consumption of artificial systems.The organic field effect transistor(OFET)is a promising component for bioinspired neuromorphic systems because it is suitable for large-scale integrated circuits and flexible devices.In this review,the organic semiconductor materials,structures and fabrication,and different artificial sensory perception systems functions based on neuromorphic OFET devices are summarized.Subsequently,a summary and challenges of neuromorphic OFET devices are provided.This review presents a detailed introduction to the recent progress of neuromorphic OFET devices from semiconductor materials to perception systems,which would serve as a reference for the development of neuromorphic systems in future bioinspired electronics.
文摘ZnO nanosheets with thickness of a few nanometers are prepared by vapor transport and condensation method, and their structure and optical properties are well characterized. Field effect transistor (FET) and ultraviolet (UV) sensors are fabricated based on the ZnO nanosheets. Due to the peculiar structure of nanosheet, the FET shows n-type enhanced mode behavior and high electrical performance, and its field-effect mobility and on/off cur- rent ratio can reach 256 cm2/(V.s) and ~10^8, respectively. Moreover, the response of UV sensors can also be remarkably improved to ~3 × 10^8. The results make the ZnO nanosheets be a good material for the applications in nanoelectronic and optoelectronic devices.
基金supported by the National Natural Science Foundation of China(Nos.61521064,61522408,61574169,6 1334007,61474136,61574166)the Ministry of Science andTechnology of China(Nos.2016YFA0201803,2016YFA0203800,2017YFB0405603)+2 种基金the Key Research Program of Frontier Sciences of Chinese Academy of Sciences(Nos.QYZDB-SSWJSC048,QYZDY-SSW-JSC001)the Beijing Municipal Science and Technology Project(No.Z171100002017011)the Opening Project of the Key Laboratory of Microelectronic Devices&Integration Technology,Institute of Microelectronics of Chinese Academy of Sciences
文摘As a promising ultra-wide bandgap semiconductor, gallium oxide(Ga_2O_3) has attracted increasing attention in recent years. The high theoretical breakdown electrical field(8 MV/cm), ultra-wide bandgap(~ 4.8 eV) and large Baliga's figure of merit(BFOM) of Ga_2O_3 make it a potential candidate material for next generation high-power electronics, including diode and field effect transistor(FET). In this paper, we introduce the basic physical properties of Ga_2O_3 single crystal, and review the recent research process of Ga_2O_3 based field effect transistors. Furthermore, various structures of FETs have been summarized and compared, and the potential of Ga_2O_3 is preliminary revealed. Finally, the prospect of the Ga_2O_3 based FET for power electronics application is analyzed.
文摘We use the extended gate field effect transistor (EGFET)as the structure of the chlorine ion sensor,and the chlorine ion ionophores (ETH9033 and TDDMAC1)are incorporated into solvent polymeric membrane (PVC/DOS),then the chlorine ion selective membrane is formed on the sensing window,and the fabrication of the EGFET chlorine ion sensing device is completed.The surface potential on the sensing membrane of the EGFET chlorine ion sensing device will be changed in the different chlorine ion concentration solutions,then changes further gate voltage and drain current to detect chlorine ion concentration.We will study non-ideal effects such as temperature,hysteresis and drift effects for the EGFET chlorine ion sensing device in this paper,these researches will help us to improve the sensing characteristics of the EGFET chlorine ion sensing device.
文摘The nano-titanium dioxide (nano-TiO_2) sensing membrane,fabricated by sol-gel technology,was used as the pH-sensing layer of the extended gate field effect transistor (EGFET) device.The objective of this research is the preparation of titanium dioxide materials by sol-gel method using Ti(OBu)_4 as the precursor.In this study,we fabricated a nano-titanium dioxide sensing layer on the ITO glass by dip coating.In order to examine the sensitivity of the nano-TiO_2 films applied to the EGFET devices,we adopted the ITO glass as substrate,and measured theⅠ_(DS)-Ⅴ_G curves of the nano-titanium dioxide separative structure EGFET device in the pH buffer solutions that have different pH values by the Keithley 236 Instrument.By the experimental results,we can obtain the pH sensitivities of the EGFET with nano-TiO_2 sensing membrane prepared by sol-gel method,which is 59.86mV/pH from pH 1 to pH 9.
文摘We use the carbon nanotube (CNT) as the material of the pH sensing layer of the separative structure for the extended gate H^+-ion sensitive field effect transistor (EGFET) device.The CNT paste was prepared with CNT powder,Ag powder,silicagel,the di-n-butyl phthalate and the toluene solvents by appropriate ratio,then immobilized on the silicon substrate to form the carbon nanotube sensing layer.We measured theⅠ_(DS)-Ⅴ_G curves of the carbon nanotube separative structure EGFET device in the different pH buffer solutions by the Keithley 236Ⅰ-Ⅴmeasurement system.According to the experimental results,we can obtain the pH sensitivities of the carbon nanotube separative structure EGFET device,which is 62.54mV/pH from pH1 to pH13.
基金Project supported by the National Natural Science Foundation of China(Grant No.51602241)the China Postdoctoral Science Foundation(Grant No.2016M592754)
文摘In this manuscript,the perovskite-based metal–oxide–semiconductor field effect transistors(MOSFETs) with phenylC61-butyric acid methylester(PCBM) layers are studied.The MOSFETs are fabricated on perovskites,and characterized by photoluminescence spectra(PL),x-ray diffraction(XRD),and x-ray photoelectron spectroscopy(XPS).With PCBM layers,the current–voltage hysteresis phenomenon is effetely inhibited,and both the transfer and output current values increase.The band energy diagrams are proposed,which indicate that the electrons are transferred into the PCBM layer,resulting in the increase of photocurrent.The electron mobility and hole mobility are extracted from the transfer curves,which are about one order of magnitude as large as those of PCBM deposited,which is the reason why the electrons are transferred into the PCBM layer and the holes are still in the perovskites,and the effects of ionized impurity scattering on carrier transport become smaller.
基金supported by Center for BioNano Health-Guardfunded by the Ministry of Science, ICT & Future Planning (MSIP) of Korea as a Global Frontier Project (HGUARD_2013M3A6B2)
文摘A facile approach was demonstrated for fabricating high-performance nonvolatile memory devices based on ferroelectric-gate field effect transistors using a p-type Si nanowire coated with omega-shaped gate organic ferroelectric poly(vinylidene fluoride-trifluoroethylene)(P(VDF-Tr FE)). We overcame the interfacial layer problem by incorporating P(VDF-Tr FE) as a ferroelectric gate using a low-temperature fabrication process. Our memory devices exhibited excellent memory characteristics with a low programming voltage of ±5 V, a large modulation in channel conductance between ON and OFF states exceeding 105, a long retention time greater than 3 9 104 s, and a high endurance of over 105 programming cycles while maintaining an ION/IOFFratio higher than 102.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61774019,51572033,and 51572241)the Beijing Municipal Commission of Science and Technology,China(Grant No.SX2018-04)
文摘Gallium oxide(Ga_2O_3), a typical ultra wide bandgap semiconductor, with a bandgap of ~4.9 e V, critical breakdown field of 8 MV/cm, and Baliga's figure of merit of 3444, is promising to be used in high-power and high-voltage devices.Recently, a keen interest in employing Ga_2O_3 in power devices has been aroused. Many researches have verified that Ga_2O_3 is an ideal candidate for fabricating power devices. In this review, we summarized the recent progress of field-effect transistors(FETs) and Schottky barrier diodes(SBDs) based on Ga_2O_3, which may provide a guideline for Ga_2O_3 to be preferably used in power devices fabrication.
基金funded by Australian Research Council discovery project DP140103041Future Fellowship FT160100205
文摘Two-dimensional(2D) materials have attracted extensive interest due to their excellent electrical, thermal,mechanical, and optical properties. Graphene has been one of the most explored 2D materials. However, its zero band gap has limited its applications in electronic devices. Transition metal dichalcogenide(TMDC), another kind of 2D material,has a nonzero direct band gap(same charge carrier momentum in valence and conduction band) at monolayer state,promising for the efficient switching devices(e.g., field-effect transistors). This review mainly focuses on the recent advances in charge carrier mobility and the challenges to achieve high mobility in the electronic devices based on 2DTMDC materials and also includes an introduction of 2D materials along with the synthesis techniques. Finally, this review describes the possible methodology and future prospective to enhance the charge carrier mobility for electronic devices.
基金supported by the National Basic Research Program of China (Grant No. 2013CBA01600)the National Natural Science Foundation of China (Grant Nos. 61261160499 and 11274154)+2 种基金the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2011ZX02707)the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2012302)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120091110028)
文摘Field-effect transistors (FETs) for logic applications, graphene and MoS2, are discussed. These materials have based on two representative two-dimensional (2D) materials, drastically different properties and require different consider- ations. The unique band structure of graphene necessitates engineering of the Dirac point, including the opening of the bandgap, the doping and the interface, before the graphene can be used in logic applications. On the other hand, MoS2 is a semiconductor, and its electron transport depends heavily on the surface properties, the number of layers, and the carrier density. Finally, we discuss the prospects for the future developments in 2D material transistors.
基金Supported by the National Basic Research Program of China under Grant Nos 2013CB921900 and 2014CB920900the National Natural Science Foundation of China under Grant No 11374021)(S.Yan,Z.Xie,J.-H,Chen)+1 种基金support from the Elemental Strategy Initiative conducted by the MEXT,Japana Grant-in-Aid for Scientific Research on Innovative Areas"Science of Atomic Layers"from JSPS
文摘The energy bandgap is an intrinsic character of semiconductors, which largely determines their properties. The ability to continuously and reversibly tune the bandgap of a single device during real time operation is of great importance not only to device physics but also to technological applications. Here we demonstrate a widely tunable bandgap of few-layer black phosphorus (BP) by the application of vertical electric field in dual-gated BP field-effect transistors. A total bandgap reduction of 124 meV is observed when the electrical displacement field is increased from 0.10 V/nm to 0.83 V/nm. Our results suggest appealing potential for few-layer BP as a tunable bandgap material in infrared optoelectronies, thermoelectric power generation and thermal imaging.
基金support by National High Technology Research and Development Program of China (No. 2011AA050504)the analysis supports from Instrumental Analysis Center of SJTU
文摘A vertical carbon nanotube field-effect transistor(CNTFET) based on silicon(Si) substrate has been proposed and simulated using a semi-classical theory. A single-walled carbon nanotube(SWNT) and an n-type Si nanowire in series construct the channel of the transistor. The CNTFET presents ambipolar characteristics at positive drain voltage(Vd) and n-type characteristics at negative Vd. The current is significantly influenced by the doping level of n-Si and the SWNT band gap. The n-branch current of the ambipolar characteristics increases with increasing doping level of the n-Si while the p-branch current decreases. The SWNT band gap has the same influence on the p-branch current at a positive Vd and n-type characteristics at negative Vd. The lower the SWNT band gap, the higher the current. However, it has no impact on the n-branch current in the ambipolar characteristics. Thick oxide is found to significantly degrade the current and the subthreshold slope of the CNTFETs.
基金Project supported by the National Basic Research Program of China(Grant No.2011CBA00602)the National Science and Technology Major Project of the Ministry of Science and Technology of China(Grant No.2011ZX02708-002)
文摘Various biaxial compressive strained GaSb p-channel metal-oxide-semiconductor field-effect transistors (MOSFETs) are experimentally and theoretically investigated, The biaxial compressive strained GaSb MOSFETs show a high peak mobility of 638 cm2/V.s, which is 3.86 times of the extracted mobility of the fabricated GaSb MOSFETs without strain. Meanwhile, first principles calculations show that the hole effective mass of GaSb depends on the biaxial compressive strain. The biaxiai compressive strain brings a remarkable enhancement of the hole mobility caused by a significant reduction in the hole effective mass due to the modulation of the valence bands.
基金supported by the National Science Foundation for Post-Doctoral Scientists of China (Grant No.20100471667)the Natural Science Foundation of Chongqing Science and Technology Commission (CQ CSTC) (Grant No.2011jjA40020)+1 种基金the National Natural Science Foundation of China (Grant Nos.60736005 and 61021061)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,Ministry of Education of China (Grant No.GGRYJJ08-05)
文摘C60 field-effect transistor (OFET) with a mobility as high as 5.17 cm2/V.s is fabricated. In our experiment, an ultrathin pentacene passivation layer on poly-(methyl methacrylate) (PMMA) insulator and a bathophenanthroline (Bphen)/Ag bilayer electrode are prepared. The OFET shows a significant enhancement of electron mobility compared with the corresponding device with a single PMMA insultor and an Ag electrode. By analysing the C60 film with atomic force microscopy and X-ray diffraction techniques, it is shown that the pentacene passivation layer can contribute to C60 film growth with the large grain size and significantly improve crystallinity. Moreover, the Bphen buffer layer can reduce the electron contact barrier from Ag electrodes to C60 film efficiently.
基金Project supported by the Opening Project of Key Laboratory of Microelectronics Devices and Integrated Technology,Institute of Microelectronics,Chinese Academy of Sciences,the National Natural Science Foundation of China(Grant No.61574166)the National Basic Research Program of China(Grant No.2013CBA01604)+1 种基金the National Key Research and Development Program of China(Grant No.2016YFA0201802)and the Beijing Training Project for the Leading Talents in S&T,China(Grant No.Z151100000315008)
文摘Graphene has attracted enormous interests due to its unique physical, mechanical, and electrical properties. Specially, graphene-based field-effect transistors (FETs) have evolved rapidly and are now considered as an option for conventional silicon devices. As a critical step in the design cycle of modem IC products, compact model refers to the development of models for integrated semiconductor devices for use in circuit simulations. The purpose of this review is to provide a theoretical description of current compact model of graphene field-effect transistors. Special attention is devoted to the charge sheet model, drift-diffusion model, Boltzmann equation, density of states (DOS), and surface-potential-based compact model. Finally, an outlook of this field is briefly discussed.
基金supported by the National High Technology Research and Development Program of China(Grant No.2011AA050401)the National Science Fundfor Distinguished Young Scholars,China(Grant No.51225701)
文摘We present the design consideration and fabrication of 4H-SiC trenched-and-implanted vertical junction field-effect transistors (TI-VJFETs). Different design factors, including channel width, channel doping, and mesa height, are con- sidered and evaluated by numerical simulations. Based on the simulation result, normally-on and normally-off devices are fabricated. The fabricated device has a 12 μm thick drift layer with 8 × 10^15 cm^-3 N-type doping and 2.6 μm channel length. The normally-on device shows a 1.2 kV blocking capability with a minimum on-state resistance of 2.33 mΩ.cm2, while the normally-off device shows an on-state resistance of 3.85 mΩ.cm2. Both the on-state and the blocking performances of the device are close to the state-of-the-art values in this voltage range.
基金Project supported by the National Natural Science Foundation of China(Grant No.61404110)the National Higher-education Institution General Research and Development Project,China(Grant No.2682014CX097)
文摘A power metal-oxide-semiconductor field-effect transistor(MOSFET) with dielectric trench is investigated to enhance the reversed blocking capability. The dielectric trench with a low permittivity to reduce the electric field at reversed blocking state has been studied. To analyze the electric field, the drift region is segmented into four regions, where the conformal mapping method based on Schwarz–Christoffel transformation has been applied. According to the analysis, the improvement in the electric field for using the low permittivity trench is mainly due to the two electric field peaks generated in the drift region around this dielectric trench. The analytical results of the electric field and the potential models are in good agreement with the simulation results.
文摘The electrical characteristics of a double-gate armchair silicene nanoribbon field-effect-transistor (DG ASiNR FET) are thoroughly investigated by using a ballistic quantum transport model based on non-equilibrium Green's function (NEGF) approach self-consistently coupled with a three-dimensional (3D) Poisson equation. We evaluate the influence of variation in uniaxial tensile strain, ribbon temperature and oxide thickness on the on-off current ratio, subthreshold swing, transconductance and the delay time of a 12-nm-length ultranarrow ASiNR FET. A novel two-parameter strain mag- nitude and temperature-dependent model is presented for designing an optimized device possessing balanced amelioration of all the electrical parameters. We demonstrate that employing HfO2 as the gate insulator can be a favorable choice and simultaneous use of it with proper combination of temperature and strain magnitude can achieve better device performance. Furthermore, a general model power (GMP) is derived which explicitly provides the electron effective mass as a function of the bandgap of a hydrogen passivated ASiNR under strain.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61071026 and 61177032)the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant No.61021061)+1 种基金the Fundamental Research Fund for the Central Universities of Misistry of Education of China (Grant No.ZYGX2010Z004)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20090185110020)
文摘A top-contact organic field-effect transistor (OFET) is fabricated by adopting a pentacene/1,11-bis(di-4- tolylaminophenyl) cyclohexane (TAPC) heterojunction structure and inserting an MoO3 buffer layer between the TAPC organic semiconductor layer and the source/drain electrode. The performances of the heterojunction OFET, including output current, field-effect mobility, and threshed voltage~ are all significantly improved by introducing the MoO3 thin buffer layer. The performance improvement of the modified heterojunction OFET is attributed to a better contact formed at the Au/TAPC interface due to the MoO3 thin buffer layer, thereby leading to a remarkable reduction of the contact resistance at the metal/organic interface.