Carbon-based nanomaterials have important research significance in various disciplines,such as composite materials,nanoelectronic devices,biosensors,biological imaging,and drug delivery.Recently,the human and ecologic...Carbon-based nanomaterials have important research significance in various disciplines,such as composite materials,nanoelectronic devices,biosensors,biological imaging,and drug delivery.Recently,the human and ecological risks associated with carbon-based nanomaterials have received increasing attention.However,the biological safety of carbon based nanomaterials has not been systematically studied.In this study,we used different types of carbon materials,namely,graphene oxide(GO),single-walled carbon nanotubes(SWCNTs),and multiwalled carbon nanotubes(MWCNTs),as models to observe their distribution and oxidative damage in vivo.The results of Histopathological and ultrastructural examinations indicated that the liver and lungs were the main accumulation targets of these nanomaterials.SR-μ-XRF analysis revealed that SWCNTs and MWCNTs might be present in the brain.This shows that the three types of carbon-based nanomaterials could cross the gas-blood barrier and eventually reach the liver tissue.In addition,SWCNTs and MWCNTs could cross the blood-brain barrier and accumulate in the cerebral cortex.The increase in ROS and MDA levels and the decrease in GSH,SOD,and CAT levels indicated that the three types of nanomaterials might cause oxidative stress in the liver.This suggests that direct instillation of these carbon-based nanomaterials into rats could induce ROS generation.In addition,iron(Fe)contaminants in these nanomaterials were a definite source of free radicals.However,these nanomaterials did not cause obvious damage to the rat brain tissue.The deposition of selenoprotein in the rat brain was found to be related to oxidative stress and Fe deficiency.This information may support the development of secure and reasonable applications of the studied carbon-based nanomaterials.展开更多
Polycaprolactone(PCL)scaffolds that are produced through additive manufacturing are one of the most researched bone tissue engineering structures in the field.Due to the intrinsic limitations of PCL,carbon nanomateria...Polycaprolactone(PCL)scaffolds that are produced through additive manufacturing are one of the most researched bone tissue engineering structures in the field.Due to the intrinsic limitations of PCL,carbon nanomaterials are often investigated to reinforce the PCL scaffolds.Despite several studies that have been conducted on carbon nanomaterials,such as graphene(G)and graphene oxide(GO),certain challenges remain in terms of the precise design of the biological and nonbiological properties of the scaffolds.This paper addresses this limitation by investigating both the nonbiological(element composition,surface,degradation,and thermal and mechanical properties)and biological characteristics of carbon nanomaterial-reinforced PCL scaffolds for bone tissue engineering applications.Results showed that the incorporation of G and GO increased surface properties(reduced modulus and wettability),material crystallinity,crystallization temperature,and degradation rate.However,the variations in compressive modulus,strength,surface hardness,and cell metabolic activity strongly depended on the type of reinforcement.Finally,a series of phenomenological models were developed based on experimental results to describe the variations of scaffold’s weight,fiber diameter,porosity,and mechanical properties as functions of degradation time and carbon nanomaterial concentrations.The results presented in this paper enable the design of three-dimensional(3D)bone scaffolds with tuned properties by adjusting the type and concentration of different functional fillers.展开更多
Graphene-based nanomaterials(GBNs) have attracted increasing interests of the scientific community due to their unique physicochemical properties and their applications in biotechnology, biomedicine, bioengineering, d...Graphene-based nanomaterials(GBNs) have attracted increasing interests of the scientific community due to their unique physicochemical properties and their applications in biotechnology, biomedicine, bioengineering, disease diagnosis and therapy. Although a large amount of researches have been conducted on these novel nanomaterials, limited comprehensive reviews are published on their biomedical applications and potential environmental and human health effects. The present research aimed at addressing this knowledge gap by examining and discussing:(1) the history, synthesis,structural properties and recent developments of GBNs for biomedical applications;(2) GBNs uses as therapeutics,drug/gene delivery and antibacterial materials;(3) GBNs applications in tissue engineering and in research as biosensors and bioimaging materials; and(4) GBNs potential environmental effects and human health risks. It also discussed the perspectives and challenges associated with the biomedical applications of GBNs.展开更多
A phosphorus and nitrogen co-doped graphene(PNG)was developed via a two-step pyrolysis approach through the intermedium of g-C_(3)N_(4) template and glyphosate as the phosphorus source,and was used for the catalytic d...A phosphorus and nitrogen co-doped graphene(PNG)was developed via a two-step pyrolysis approach through the intermedium of g-C_(3)N_(4) template and glyphosate as the phosphorus source,and was used for the catalytic dehydrochlorination of 1,2-dichloroethane(EDC)to vinyl chloride monomer(VCM)production.The characterization results indicate that a volcano relationship of surface area and surface properties with the usage of phosphorus precursor was observed,and the sample of PNG-900-6 possesses not only the thin film structure with enhanced surface area but also the smaller grain size of PNG attachments.Accordingly,such PNGs show a great improvement of catalytic performance in the dehydrochlorination of EDC,and the PNG-900-6 catalyst behaves the best with a 4-times higher activity than that on the nitrogen doped graphene(NG).It was also proved that the synergetic effect of the unique P-C coordination on the graphene to generate more quaternary nitrogen species was crucial in determining the catalytic performance of EDC conversion.Our results demonstrate that the phosphorus and nitrogen co-doped graphene offers many advantages in physical structure and chemical property,and are also great potential on the catalytic application in the dehydrochlorination of 1,2-dichloroethane.展开更多
采用简单的超声、冷冻干燥和热还原相结合的自组装方法,设计和构建了纳米硅核/间隙/无定形碳壳层/石墨烯(Si/void/C/graphene)三维有序纳米复合结构。在该结构中,纳米硅核与碳壳层之间的空隙有效避免了硅的巨大体积膨胀对碳层的破坏,大...采用简单的超声、冷冻干燥和热还原相结合的自组装方法,设计和构建了纳米硅核/间隙/无定形碳壳层/石墨烯(Si/void/C/graphene)三维有序纳米复合结构。在该结构中,纳米硅核与碳壳层之间的空隙有效避免了硅的巨大体积膨胀对碳层的破坏,大幅度提高了锂离子电池的循环稳定性;将Si/void/C纳米结构嵌入在石墨烯层与层之间,利用石墨烯卓越的导电性和柔韧性,进一步缓冲了硅材料的体积效应和提高了复合材料的导电性能。该复合材料在4200 m A·h·g^(-1)(1 C)电流密度下循环1000次后比容量仍高达1603 m A·h·g^(-1);在67 A·g^(-1)(16 C)的高倍率下,比容量仍有310 m A·h·g^(-1),显示出了在锂离子电池负极材料领域的巨大应用潜力。展开更多
By means of inkjet printing technique, flexible and all-solid-state micro-supercapacitors(MSCs) were fabricated with carbon-based hybrid ink composed of graphene oxide(GO,98.0vol.%) ink and commercial pen ink(2.0vol.%...By means of inkjet printing technique, flexible and all-solid-state micro-supercapacitors(MSCs) were fabricated with carbon-based hybrid ink composed of graphene oxide(GO,98.0vol.%) ink and commercial pen ink(2.0vol.%). A small amount of commercial pen ink was added to effectively reduce the agglomeration of theGO sheets during solvent evaporation and the following reduction processes in which the presence of graphite carbon nanoparticles served as nano-spacer to separate GO sheets. The printed device fabricated using the hybrid ink,combined with the binder-free microelectrodes and interdigital microelectrode configuration, exhibits nearly 780%enhancement in areal capacitance compared with that of pure GO ink. It also shows excellent flexibility and cycling stability with nearly 100% retention of the areal capacitance after 10,000 cycles. The all-solid-state device can be optionally connected in series or in parallel to meet the voltage and capacity requirements for a given application.This work demonstrates a promising future of the carbonbased hybrid ink for directly large-scale inkjet printing MSCs for disposable energy storage devices.展开更多
The isolation of the first two-dimensional material, graphene-a monolayer of carbon atoms arranged in a hexagonal lattice-opened new exciting opportunities in the field of condensed matter physics and materials. Its i...The isolation of the first two-dimensional material, graphene-a monolayer of carbon atoms arranged in a hexagonal lattice-opened new exciting opportunities in the field of condensed matter physics and materials. Its isolation and subsequent studies demonstrated that it was possible to obtain sheets of atomically thin crystals and that these were stable, and they also began to show its outstanding properties, thus opening the door to a whole new family of materials, known as two-dimensional materials or 2D materials. The great interest in different 2D materials is motivated by the variety of properties they show, being candidates for numerous applications.Additionally, the combination of 2D crystals allows the assembly of composite, on-demand materials, known as van der Waals heterostructures, which take advantage of the properties of those materials to create functionalities that otherwise would not be accessible. For example, the combination of 2D materials, which can be done with high precision, is opening up opportunities for the study of new challenges in fundamental physics and novel applications. Here we review the latest fundamental discoveries in the area of 2D materials and offer a perspective on the future of the field.展开更多
Graphene possesses a large specific surface area, a high Young’s modulus, high fracture strength, high electrical conductivity, and excellent optical performance. It has been widely studied for biomedical use since i...Graphene possesses a large specific surface area, a high Young’s modulus, high fracture strength, high electrical conductivity, and excellent optical performance. It has been widely studied for biomedical use since its first appearance in the literature. This article offers an overview of the latest advances in the design of graphene-based materials for delivery of bioactive agents. To enhance the translation of these carriers into practical use, the toxicity involved is needed to be examined in future research in more detail. In addition, guidelines for standardizing experimental conditions during the evaluation of the performance of graphene-based materials are required to be established so that candidates showing higher practical potential can be more effectively identified for further development. This can streamline the optimization and use of graphene-based materials in delivery applications.展开更多
Defects in graphene can profoundly impact its extraordinary properties,ultimately influencing the performances of graphene-based nanodevices.Methods to detect defects with atomic resolution in graphene can be technica...Defects in graphene can profoundly impact its extraordinary properties,ultimately influencing the performances of graphene-based nanodevices.Methods to detect defects with atomic resolution in graphene can be technically demanding and involve complex sample preparations.An alternative approach is to observe the thermal vibration properties of the graphene sheet,which reflects defect information but in an implicit fashion.Machine learning,an emerging data-driven approach that offers solutions to learning hidden patterns from complex data,has been extensively applied in material design and discovery problems.In this paper,we propose a machine learning-based approach to detect graphene defects by discovering the hidden correlation between defect locations and thermal vibration features.Two prediction strategies are developed:an atom-based method which constructs data by atom indices,and a domain-based method which constructs data by domain discretization.Results show that while the atom-based method is capable of detecting a single-atom vacancy,the domain-based method can detect an unknown number of multiple vacancies up to atomic precision.Both methods can achieve approximately a 90%prediction accuracy on the reserved data for testing,indicating a promising extrapolation into unseen future graphene configurations.The proposed strategy offers promising solutions for the non-destructive evaluation of nanomaterials and accelerates new material discoveries.展开更多
We report near-zero crossover for vanadium cross-permeation through single-layer graphene immobilized at the interface of two Nafion?polymer electrolyte membranes.Vanadium ion diffusion and migration,including proton ...We report near-zero crossover for vanadium cross-permeation through single-layer graphene immobilized at the interface of two Nafion?polymer electrolyte membranes.Vanadium ion diffusion and migration,including proton mobility through membrane composites,were studied with and without graphene under diffusion and migration conditions.Single-layer graphene was found to effectively inhibit vanadium ion diffusion and migration under specific conditions.The single-layer graphene composites also enabled remarkable ion transmission selectivity improvements over pure Nafion membranes,with proton transport being four orders of magnitude faster than vanadium ion transport.Resistivity values of 0.02±0.005Ωcm^(2) for proton and 223±4Ωcm^(2) for vanadium ion through single atomic layer graphene are reported.This high selectivity may have significant impact on flow battery applications or for other electrochemical devices where proton conductivity is required,and transport of other species is detrimental.Our results emphasize that crossover may be essentially completely eliminated in some cases,enabling for greatly improved operational viability.展开更多
Microbial fuel cells(MFCs)are an attractive innovation at the nexus of energy and water security for the future.MFC utilizes electrochemically active microorganisms to oxidize biodegradable substrates and generate bio...Microbial fuel cells(MFCs)are an attractive innovation at the nexus of energy and water security for the future.MFC utilizes electrochemically active microorganisms to oxidize biodegradable substrates and generate bioelectricity in a single step.The material of the anode plays a vital role in increasing the MFC’s power output.The anode in MFC can be upgraded using nanomaterials providing benefits of exceptional physicochemical properties.The nanomaterials in anode gives a high surface area,improved electron transfer promotes electroactive biofilm.Enhanced power output in terms of Direct current(DC)can be obtained as the consequence of improved microbe-electrode interaction.However,several limitations like complex synthesis and degeneration of property do exist in the development of nanomaterial-based anode.The present review discusses different renewable nanomaterial applied in the anode to recover bioelectricity in MFC.Carbon nanomaterials have emerged in the past decade as promising materials for anode construction.Composite materials have also demonstrated the capacity to become potential anode materials of choice.Application of a few transition metal oxides have been explored for efficient extracellular electron transport(EET)from microbes to the anode.展开更多
A series of organic compounds were successfully immobilized on an N-doped graphene quantum dot (N-GQD) to prepare a multifunctional organocatalyst for coupling reaction between CO_(2)and propylene oxide (PO).The simul...A series of organic compounds were successfully immobilized on an N-doped graphene quantum dot (N-GQD) to prepare a multifunctional organocatalyst for coupling reaction between CO_(2)and propylene oxide (PO).The simultaneous presence of halide ions in conjunction with acidic-and basic-functional groups on the surface of the nanoparticles makes them highly active for the production of propylene carbonate (PC).The effects of variables such as catalyst loading,reaction temperature,and structure of substituents are discussed.The proposed catalysts were characterized by different techniques,including Fourier transform infrared spectroscopy (FTIR),field emission scanning electron microscopy/energy dispersive X-ray microanalysis (FESEM/EDX),thermogravimetric analysis (TGA),elemental analysis,atomic force microscopy (AFM),and ultraviolet–visible (UV-Vis) spectroscopy.Under optimal reaction conditions,3-bromopropionic acid (BPA) immobilized on N-GQD showed a remarkable activity,affording the highest yield of 98%at 140℃ and 106Pa without any co-catalyst or solvent.These new metal-free catalysts have the advantage of easy separation and reuse several times.Based on the experimental data,a plausible reaction mechanism is suggested,where the hydrogen bonding donors and halogen ion can activate the epoxide,and amine functional groups play a vital role in CO_(2)adsorption.展开更多
The thermal conductivity of carbon-based nanomaterials(e.g.carbon nanotubes,graphene,graphene aerogels,and carbon fibers)is a physical property of great scientific and engineering importance.Thermal conductivity tailo...The thermal conductivity of carbon-based nanomaterials(e.g.carbon nanotubes,graphene,graphene aerogels,and carbon fibers)is a physical property of great scientific and engineering importance.Thermal conductivity tailoring via structure engineering is widely conducted to meet the requirement of different applications.Traditionally,the thermal conductivity-temperature relation is used to analyze the structural effect but this relation is extremely affected by effect of temperature-dependence of specific heat.In this paper,detailed review and discussions are provided on the thermal reffusivity theory to analyze the structural effects on thermal conductivity.For the first time,the thermal reffusivity-temperature trend in fact uncovers very strong structural degrading with reduced temperature for various carbon-based nanomaterials.The residual thermal reffusivity at the 0 K limit can be used to directly calculate the structure thermal domain(STD)size,a size like that determined by x-ray diffraction,but reflects phonon scattering.For amorphous carbon materials or nanomaterials that could not induce sufficient x-ray scattering,the STD size probably provides the only available physical domain size for structure analysis.Different from many isotropic and anisotropic materials,carbon-based materials(e.g.graphite,graphene,and graphene paper)have Van der Waals bonds in the c-axis direction and covalent bonds in the a-axis direction.This results in two different kinds of phonons whose specific heat,phonon velocity,and mean free path are completely different.A physical model is proposed to introduce the anisotropic specific heat and temperature concept,and to interpret the extremely long phonon mean free path despite the very low thermal conductivity in the c-axis direction.This model also can be applied to other similar anisotropic materials that feature Van der Waals and covalent bonds in different directions.展开更多
基金the National Natural Science Foundation of the Henan University(21IRTSTHN011).
文摘Carbon-based nanomaterials have important research significance in various disciplines,such as composite materials,nanoelectronic devices,biosensors,biological imaging,and drug delivery.Recently,the human and ecological risks associated with carbon-based nanomaterials have received increasing attention.However,the biological safety of carbon based nanomaterials has not been systematically studied.In this study,we used different types of carbon materials,namely,graphene oxide(GO),single-walled carbon nanotubes(SWCNTs),and multiwalled carbon nanotubes(MWCNTs),as models to observe their distribution and oxidative damage in vivo.The results of Histopathological and ultrastructural examinations indicated that the liver and lungs were the main accumulation targets of these nanomaterials.SR-μ-XRF analysis revealed that SWCNTs and MWCNTs might be present in the brain.This shows that the three types of carbon-based nanomaterials could cross the gas-blood barrier and eventually reach the liver tissue.In addition,SWCNTs and MWCNTs could cross the blood-brain barrier and accumulate in the cerebral cortex.The increase in ROS and MDA levels and the decrease in GSH,SOD,and CAT levels indicated that the three types of nanomaterials might cause oxidative stress in the liver.This suggests that direct instillation of these carbon-based nanomaterials into rats could induce ROS generation.In addition,iron(Fe)contaminants in these nanomaterials were a definite source of free radicals.However,these nanomaterials did not cause obvious damage to the rat brain tissue.The deposition of selenoprotein in the rat brain was found to be related to oxidative stress and Fe deficiency.This information may support the development of secure and reasonable applications of the studied carbon-based nanomaterials.
基金The authors wish to acknowledge Engineering and Physical Sciences Research Council(EPSRC)UK for the Global Challenges Research Fund(No.EP/R015139/1)Rosetrees Trust UK&Stoneygate Trust UK for the Enterprise Fellowship(Ref:M874).
文摘Polycaprolactone(PCL)scaffolds that are produced through additive manufacturing are one of the most researched bone tissue engineering structures in the field.Due to the intrinsic limitations of PCL,carbon nanomaterials are often investigated to reinforce the PCL scaffolds.Despite several studies that have been conducted on carbon nanomaterials,such as graphene(G)and graphene oxide(GO),certain challenges remain in terms of the precise design of the biological and nonbiological properties of the scaffolds.This paper addresses this limitation by investigating both the nonbiological(element composition,surface,degradation,and thermal and mechanical properties)and biological characteristics of carbon nanomaterial-reinforced PCL scaffolds for bone tissue engineering applications.Results showed that the incorporation of G and GO increased surface properties(reduced modulus and wettability),material crystallinity,crystallization temperature,and degradation rate.However,the variations in compressive modulus,strength,surface hardness,and cell metabolic activity strongly depended on the type of reinforcement.Finally,a series of phenomenological models were developed based on experimental results to describe the variations of scaffold’s weight,fiber diameter,porosity,and mechanical properties as functions of degradation time and carbon nanomaterial concentrations.The results presented in this paper enable the design of three-dimensional(3D)bone scaffolds with tuned properties by adjusting the type and concentration of different functional fillers.
基金supported by National Institutes of Heath NIMHD Grant # G12MD007581 through the RCMI Center for Environmental HealthNational Science Foundation Grant # HRD-1547754 through the CREST Center for Nanotoxicity Studies at Jackson State University
文摘Graphene-based nanomaterials(GBNs) have attracted increasing interests of the scientific community due to their unique physicochemical properties and their applications in biotechnology, biomedicine, bioengineering, disease diagnosis and therapy. Although a large amount of researches have been conducted on these novel nanomaterials, limited comprehensive reviews are published on their biomedical applications and potential environmental and human health effects. The present research aimed at addressing this knowledge gap by examining and discussing:(1) the history, synthesis,structural properties and recent developments of GBNs for biomedical applications;(2) GBNs uses as therapeutics,drug/gene delivery and antibacterial materials;(3) GBNs applications in tissue engineering and in research as biosensors and bioimaging materials; and(4) GBNs potential environmental effects and human health risks. It also discussed the perspectives and challenges associated with the biomedical applications of GBNs.
基金the Chinese Academy of Sciences Project for Young Scientists in Basic Research,China(YSBR-022)the National Natural Science Foundation of China,China(21925803)the Youth Innovation Promotion Association CAS,China.
文摘A phosphorus and nitrogen co-doped graphene(PNG)was developed via a two-step pyrolysis approach through the intermedium of g-C_(3)N_(4) template and glyphosate as the phosphorus source,and was used for the catalytic dehydrochlorination of 1,2-dichloroethane(EDC)to vinyl chloride monomer(VCM)production.The characterization results indicate that a volcano relationship of surface area and surface properties with the usage of phosphorus precursor was observed,and the sample of PNG-900-6 possesses not only the thin film structure with enhanced surface area but also the smaller grain size of PNG attachments.Accordingly,such PNGs show a great improvement of catalytic performance in the dehydrochlorination of EDC,and the PNG-900-6 catalyst behaves the best with a 4-times higher activity than that on the nitrogen doped graphene(NG).It was also proved that the synergetic effect of the unique P-C coordination on the graphene to generate more quaternary nitrogen species was crucial in determining the catalytic performance of EDC conversion.Our results demonstrate that the phosphorus and nitrogen co-doped graphene offers many advantages in physical structure and chemical property,and are also great potential on the catalytic application in the dehydrochlorination of 1,2-dichloroethane.
文摘采用简单的超声、冷冻干燥和热还原相结合的自组装方法,设计和构建了纳米硅核/间隙/无定形碳壳层/石墨烯(Si/void/C/graphene)三维有序纳米复合结构。在该结构中,纳米硅核与碳壳层之间的空隙有效避免了硅的巨大体积膨胀对碳层的破坏,大幅度提高了锂离子电池的循环稳定性;将Si/void/C纳米结构嵌入在石墨烯层与层之间,利用石墨烯卓越的导电性和柔韧性,进一步缓冲了硅材料的体积效应和提高了复合材料的导电性能。该复合材料在4200 m A·h·g^(-1)(1 C)电流密度下循环1000次后比容量仍高达1603 m A·h·g^(-1);在67 A·g^(-1)(16 C)的高倍率下,比容量仍有310 m A·h·g^(-1),显示出了在锂离子电池负极材料领域的巨大应用潜力。
基金supported by National Natural Science Foundation of China(Grant Nos.11274308 and 21401202)
文摘By means of inkjet printing technique, flexible and all-solid-state micro-supercapacitors(MSCs) were fabricated with carbon-based hybrid ink composed of graphene oxide(GO,98.0vol.%) ink and commercial pen ink(2.0vol.%). A small amount of commercial pen ink was added to effectively reduce the agglomeration of theGO sheets during solvent evaporation and the following reduction processes in which the presence of graphite carbon nanoparticles served as nano-spacer to separate GO sheets. The printed device fabricated using the hybrid ink,combined with the binder-free microelectrodes and interdigital microelectrode configuration, exhibits nearly 780%enhancement in areal capacitance compared with that of pure GO ink. It also shows excellent flexibility and cycling stability with nearly 100% retention of the areal capacitance after 10,000 cycles. The all-solid-state device can be optionally connected in series or in parallel to meet the voltage and capacity requirements for a given application.This work demonstrates a promising future of the carbonbased hybrid ink for directly large-scale inkjet printing MSCs for disposable energy storage devices.
基金financial support through the project Medium-Sized Centre programme R-723-000-001-281support from EU Flagship Programs (Graphene CNECTICT-604391 and 2D-SIPC Quantum Technology)European Research Council Synergy Grant Hetero2D, the Royal Society, EPSRC grants EP/N010345/1, EP/ P026850/1, EP/S030719/1.
文摘The isolation of the first two-dimensional material, graphene-a monolayer of carbon atoms arranged in a hexagonal lattice-opened new exciting opportunities in the field of condensed matter physics and materials. Its isolation and subsequent studies demonstrated that it was possible to obtain sheets of atomically thin crystals and that these were stable, and they also began to show its outstanding properties, thus opening the door to a whole new family of materials, known as two-dimensional materials or 2D materials. The great interest in different 2D materials is motivated by the variety of properties they show, being candidates for numerous applications.Additionally, the combination of 2D crystals allows the assembly of composite, on-demand materials, known as van der Waals heterostructures, which take advantage of the properties of those materials to create functionalities that otherwise would not be accessible. For example, the combination of 2D materials, which can be done with high precision, is opening up opportunities for the study of new challenges in fundamental physics and novel applications. Here we review the latest fundamental discoveries in the area of 2D materials and offer a perspective on the future of the field.
基金financial support received from the Chinese University of Hong Kong,Shenzhen(PF01001421 and UDF01001421)Natural Science Foundation of Guangdong Province(2018A030310485)Research Grants Council of the Government of Hong Kong Special Administrative Region(C5012-15E)。
文摘Graphene possesses a large specific surface area, a high Young’s modulus, high fracture strength, high electrical conductivity, and excellent optical performance. It has been widely studied for biomedical use since its first appearance in the literature. This article offers an overview of the latest advances in the design of graphene-based materials for delivery of bioactive agents. To enhance the translation of these carriers into practical use, the toxicity involved is needed to be examined in future research in more detail. In addition, guidelines for standardizing experimental conditions during the evaluation of the performance of graphene-based materials are required to be established so that candidates showing higher practical potential can be more effectively identified for further development. This can streamline the optimization and use of graphene-based materials in delivery applications.
基金This work used the Extreme Science and Engineering Discovery Environment(XSEDE)Bridges system,which is supported by National Science Foundation Grant Number ACI-1548562.
文摘Defects in graphene can profoundly impact its extraordinary properties,ultimately influencing the performances of graphene-based nanodevices.Methods to detect defects with atomic resolution in graphene can be technically demanding and involve complex sample preparations.An alternative approach is to observe the thermal vibration properties of the graphene sheet,which reflects defect information but in an implicit fashion.Machine learning,an emerging data-driven approach that offers solutions to learning hidden patterns from complex data,has been extensively applied in material design and discovery problems.In this paper,we propose a machine learning-based approach to detect graphene defects by discovering the hidden correlation between defect locations and thermal vibration features.Two prediction strategies are developed:an atom-based method which constructs data by atom indices,and a domain-based method which constructs data by domain discretization.Results show that while the atom-based method is capable of detecting a single-atom vacancy,the domain-based method can detect an unknown number of multiple vacancies up to atomic precision.Both methods can achieve approximately a 90%prediction accuracy on the reserved data for testing,indicating a promising extrapolation into unseen future graphene configurations.The proposed strategy offers promising solutions for the non-destructive evaluation of nanomaterials and accelerates new material discoveries.
文摘We report near-zero crossover for vanadium cross-permeation through single-layer graphene immobilized at the interface of two Nafion?polymer electrolyte membranes.Vanadium ion diffusion and migration,including proton mobility through membrane composites,were studied with and without graphene under diffusion and migration conditions.Single-layer graphene was found to effectively inhibit vanadium ion diffusion and migration under specific conditions.The single-layer graphene composites also enabled remarkable ion transmission selectivity improvements over pure Nafion membranes,with proton transport being four orders of magnitude faster than vanadium ion transport.Resistivity values of 0.02±0.005Ωcm^(2) for proton and 223±4Ωcm^(2) for vanadium ion through single atomic layer graphene are reported.This high selectivity may have significant impact on flow battery applications or for other electrochemical devices where proton conductivity is required,and transport of other species is detrimental.Our results emphasize that crossover may be essentially completely eliminated in some cases,enabling for greatly improved operational viability.
文摘Microbial fuel cells(MFCs)are an attractive innovation at the nexus of energy and water security for the future.MFC utilizes electrochemically active microorganisms to oxidize biodegradable substrates and generate bioelectricity in a single step.The material of the anode plays a vital role in increasing the MFC’s power output.The anode in MFC can be upgraded using nanomaterials providing benefits of exceptional physicochemical properties.The nanomaterials in anode gives a high surface area,improved electron transfer promotes electroactive biofilm.Enhanced power output in terms of Direct current(DC)can be obtained as the consequence of improved microbe-electrode interaction.However,several limitations like complex synthesis and degeneration of property do exist in the development of nanomaterial-based anode.The present review discusses different renewable nanomaterial applied in the anode to recover bioelectricity in MFC.Carbon nanomaterials have emerged in the past decade as promising materials for anode construction.Composite materials have also demonstrated the capacity to become potential anode materials of choice.Application of a few transition metal oxides have been explored for efficient extracellular electron transport(EET)from microbes to the anode.
基金supported by Iran National Science Foundation(No.97015707)。
文摘A series of organic compounds were successfully immobilized on an N-doped graphene quantum dot (N-GQD) to prepare a multifunctional organocatalyst for coupling reaction between CO_(2)and propylene oxide (PO).The simultaneous presence of halide ions in conjunction with acidic-and basic-functional groups on the surface of the nanoparticles makes them highly active for the production of propylene carbonate (PC).The effects of variables such as catalyst loading,reaction temperature,and structure of substituents are discussed.The proposed catalysts were characterized by different techniques,including Fourier transform infrared spectroscopy (FTIR),field emission scanning electron microscopy/energy dispersive X-ray microanalysis (FESEM/EDX),thermogravimetric analysis (TGA),elemental analysis,atomic force microscopy (AFM),and ultraviolet–visible (UV-Vis) spectroscopy.Under optimal reaction conditions,3-bromopropionic acid (BPA) immobilized on N-GQD showed a remarkable activity,affording the highest yield of 98%at 140℃ and 106Pa without any co-catalyst or solvent.These new metal-free catalysts have the advantage of easy separation and reuse several times.Based on the experimental data,a plausible reaction mechanism is suggested,where the hydrogen bonding donors and halogen ion can activate the epoxide,and amine functional groups play a vital role in CO_(2)adsorption.
基金the National Natural Science Foundation of China(52276080 for Y.X)US National Science Foundation(CBET1930866 and CMMI2032464 for X.W).
文摘The thermal conductivity of carbon-based nanomaterials(e.g.carbon nanotubes,graphene,graphene aerogels,and carbon fibers)is a physical property of great scientific and engineering importance.Thermal conductivity tailoring via structure engineering is widely conducted to meet the requirement of different applications.Traditionally,the thermal conductivity-temperature relation is used to analyze the structural effect but this relation is extremely affected by effect of temperature-dependence of specific heat.In this paper,detailed review and discussions are provided on the thermal reffusivity theory to analyze the structural effects on thermal conductivity.For the first time,the thermal reffusivity-temperature trend in fact uncovers very strong structural degrading with reduced temperature for various carbon-based nanomaterials.The residual thermal reffusivity at the 0 K limit can be used to directly calculate the structure thermal domain(STD)size,a size like that determined by x-ray diffraction,but reflects phonon scattering.For amorphous carbon materials or nanomaterials that could not induce sufficient x-ray scattering,the STD size probably provides the only available physical domain size for structure analysis.Different from many isotropic and anisotropic materials,carbon-based materials(e.g.graphite,graphene,and graphene paper)have Van der Waals bonds in the c-axis direction and covalent bonds in the a-axis direction.This results in two different kinds of phonons whose specific heat,phonon velocity,and mean free path are completely different.A physical model is proposed to introduce the anisotropic specific heat and temperature concept,and to interpret the extremely long phonon mean free path despite the very low thermal conductivity in the c-axis direction.This model also can be applied to other similar anisotropic materials that feature Van der Waals and covalent bonds in different directions.