The use of nanotechnology in drug delivery is a rapidly expanding field. Biodegradable or nontoxic nanomaterials have the most promising application potentials in nanomedicine.
A light-switchable transgene system called LightOn gene expression system could regulate gene expression with a high on/off ratio under blue light,and have great potential for spatiotemporally controllable gene expres...A light-switchable transgene system called LightOn gene expression system could regulate gene expression with a high on/off ratio under blue light,and have great potential for spatiotemporally controllable gene expression.We developed a nanoparticle drug delivery system(NDDS)to achieve tumor microenvironment-responsive and targeted delivery of diphtheria toxin A(DTA)fragment-encoded plasmids to tumor sites.The expression of DTA was induced by exposure to blue light.Nanoparticles composed of polyethylenimine and vitamin E succinate linked by a disulfide bond,and PEGylated hyaluronic acid modified with RGD peptide,accumulated in tumor tissues and were actively internalized into 4 T1 cells via dual targeting to CD44 andαvβ3 receptors.The LightOn gene expression system was able to control target protein expression through regulation of the intensity or duration of blue light exposure.In vitro studies showed that lisht-induced DTA expression reduced 4 T1 cell viability and induced apoptosis.Furthermore,the LightOn gene expression system enabled spatiotemporal control of the expression of DTA in a mouse 4 T1 tumor xenogratt model,which resulted in excellent antitumor effects,reduced tumor angiogenesis,and no systemic toxicity.The combination of the LightOn gene expression system and NDDS may be an effective strategy for treatment of breast cancer.展开更多
Novel insulin-loaded nanoparticles based on hydroxypropyl-β-cyclodextrin modified carboxymethyl chitosan(CMC-HP-β-CD) were prepared to improve the oral bioavailability of insulin. The CMC-HP-β-CD was characterize...Novel insulin-loaded nanoparticles based on hydroxypropyl-β-cyclodextrin modified carboxymethyl chitosan(CMC-HP-β-CD) were prepared to improve the oral bioavailability of insulin. The CMC-HP-β-CD was characterized by FT-IR spectroscopy and 1H-NMR spectra. The insulin-loaded nanoparticles were prepared through crosslinking with calcium ions, and the morphology and size of the prepared nanoparticles were characterized by transmission electron microscopy(TEM) and dynamic light scattering(DLS). Cumulative release in vitro study was performed respectively in simulated gastric medium fluid(SGF, p H=1.2), simulated intestinal fluid(SIF, p H=6.8) and simulated colonic fluid(SCF, p H=7.4). The encapsulation efficiency of insulin was up to 87.14 ± 4.32% through high-performance liquid chromatography(HPLC). Statistics indicated that only 15% of the encapsulated insulin was released from the CMC-HP-β-CD nanoparticles in 36 h in SGF, and about 50% of the insulin could be released from the nanoparticles in SIF, whereas more than 80% was released in SCF. In addition, the solution containing insulin nanoparticles could effectively reduce the blood glucose level of diabetic mice. The cytotoxicity test showed that the samples had no cytotoxicity. CMC-HP-β-CD nanoparticles are promising candidates as potential carriers in oral insulin delivery systems.展开更多
We summarize the mechanism by which taurine(Tau)inhibits autophagy and induces iron apoptosis in hepatic stellate cells.Tau interacts with autophagy regulates multifunctional proteins,microtubule-associated protein 1 ...We summarize the mechanism by which taurine(Tau)inhibits autophagy and induces iron apoptosis in hepatic stellate cells.Tau interacts with autophagy regulates multifunctional proteins,microtubule-associated protein 1 light chain 3 Beta,and autophagy-related gene 5 to inhibit autophagy,binds to ferritin heavy chain 1 and nuclear receptor coactivator 4 to trigger ferritin autophagy,and interacts with glutathione peroxidase 4 to promote iron apoptosis.There is a solid rationale for developing Tau-based therapies targeting autophagy and ferroptosis regulation.From a pharmaceutical point of view,there are certain requirements for Tau protein delivery systems,such as loading efficiency,stability,and targeting.Nanomaterials should also contain a hydrophilic motif similar to Tau to optimize loading efficiency.Since Tau is a hydrophilic molecule with high water solubility,liposomes,micelles,and amphiphilic polymer nanoparticles may represent a superior choice.The nanostructure of the liposome includes a water region and a lipid membrane to sequester hydrophilic and hydrophobic drugs,respectively,whereas Tau is expected to be loaded into the water region.In addition,a representative method of actively targeting hematopoietic stem cells is introduced.A Tau-based method for the treatment of liver fibrosis is proposed based on the formulation of common liposomes(lecithin plus cholesterol).展开更多
Neutrophils,the most abundant leukocytes in human blood,are essential fighter immune cells against microbial infection.Based on the finding that neutrophils can either restrict or promote cancer progression,tumor-asso...Neutrophils,the most abundant leukocytes in human blood,are essential fighter immune cells against microbial infection.Based on the finding that neutrophils can either restrict or promote cancer progression,tumor-associated neutrophils(TAN)are classified into anti-tumor N1 and pro-tumor N2 subsets.One of the major mechanisms underlying the tumor-promoting function of N2-TANs is suppression of adaptive immune cells,in particular,cytotoxic T lymphocytes.Currently,no established methodologies are available that can unequivocally distinguish immunosuppressive TANs and granulocytic/polymorphonuclear myeloid-derived suppressor cells(G/PMN-MDSC).In view of the critical role of PMN-MDSCs in immune evasion and resistance to cancer immunotherapy,as established from data obtained with diverse cancer models,therapeutic strategies targeting these cells have been actively developed to enhance the efficacy of immunotherapy.Here,we have reviewed the available literature on strategies targeting PMN-MDSCs and summarized the findings into four categories:(1)depletion of existing PMN-MDSCs,(2)blockade of the development of PMNMDSCs,(3)blockade of PMN-MDSC recruitment,(4)inhibition of immunosuppressive function.Owing to their high mobility to inflamed organs and ability to trespass the blood-brain barrier,neutrophils are outstanding candidate carriers in nanoparticle-based therapies.Another attractive application of neutrophils in cancer therapy is the use of neutrophil membrane-derived nanovesicles as a surrogate of extracellular vesicles for more efficient and scalable drug delivery.In the second part of the review,we have highlighted recent advances in the field of neutrophil-based cancer drug delivery.Overall,we believe that neutrophil-based therapeutics are a rapidly growing area of cancer therapy with significant potential benefits.展开更多
A novel pH-sensitive nanoparticle drug delivery system (DDS) derived fl om natural polysaccharide pullulan for doxorubicin (DOX) release was prepared.Pullulan was functionalized by successive carboxymethylization and ...A novel pH-sensitive nanoparticle drug delivery system (DDS) derived fl om natural polysaccharide pullulan for doxorubicin (DOX) release was prepared.Pullulan was functionalized by successive carboxymethylization and amidation to introduce hydrazide groups.DOX was then grafted onto pullulan backbone through the pH-sensitive hydrazone bond to form a pullulan/DOX conjugate.This conjugate self-assembled to form nano-sized particles in aqueous solution as a result of the hydrophobic interaction of the DOX.Trans...展开更多
Nanoparticles conjugated with antibody were designed as active drug delivery system to reduce the toxicity and side effects of drugs for acute myeloid leukemia(AML).Moreover,methotrexate(MTX)was chosen as modeldru...Nanoparticles conjugated with antibody were designed as active drug delivery system to reduce the toxicity and side effects of drugs for acute myeloid leukemia(AML).Moreover,methotrexate(MTX)was chosen as modeldrug and encapsulate within folic acid modified carboxymethylchitosan(FACMCS)nanoparticles through self-assembling.The chemicalstructure,morphology,release and targeting of nanoparticles were characterized by routine detection.It is demonstrated that the mean diameter is about 150 nm,the release rate increases with the decreasing of p H,the binding rate of CD33 antibody and FA-CMCS nanoparticles is about 5:2,and nanoparticles can effectively bind onto HL60 cells in vitro.The experimentalresults indicate that the FA-CMCS nanoparticles conjugated with antibody may be used as a potentialp Hsensitive drug delivery system with leukemic targeting properties.展开更多
OBJECTIVE To review the application of nanoparticles modified with angiopep-2,providing theoretical guidance for the diagnosis and treatment of glioma. METHODS According to domestic and foreign research reports of nan...OBJECTIVE To review the application of nanoparticles modified with angiopep-2,providing theoretical guidance for the diagnosis and treatment of glioma. METHODS According to domestic and foreign research reports of nanoparticles modified with angiopep-2 in recent years,the application in the diagnosis and treatment of glioma was summarized and analyzed. RESULTS Angiopep-2 can be modified to the surface of nanoparticles loaded with imaging agents or chemotherapeutic agents,which can significantly improve the imaging effect of glioma and achieve targeted drug delivery. CONCLUSION Angiopep-2 exhibits a high brain penetration capability in blood brain barrier and in glioma cells. The nanoparticles modified with angiopep-2 can delivery various imaging agents and chemotherapeutic agents to glioma cells,the dual-targeting delivery systems can provide theoretical guidance for the diagnosis and treatment of glioma.展开更多
The recent advances in nanoscience and nanotechnology have greatly facilitated the development of nanoparticle drug delivery system. A nanoparticle drug delivery system of silymarin will improve its poor solubility in...The recent advances in nanoscience and nanotechnology have greatly facilitated the development of nanoparticle drug delivery system. A nanoparticle drug delivery system of silymarin will improve its poor solubility in water and oil, thus enhancing its bioavailability. A variety of nanoparticle formulations of silymarin such as solid lipid nanoparticles, microemulsion and self-emulsifying drug delivery system, and liposomes have been extensively investigated. This paper reviews the advances of these formulations on their preparation and characterization, absorption and bioavailability, as well as in vivo and in vitro studies, in order to provide an assessment of current research for further pharmaceutical studies of silymarin.展开更多
A drug carrier system of the hybrid nanoparticles based on the redox-responsive P[(2-((2-((camptothecin)-oxy)ethyl)disulfanyl)ethylmethacrylate)-co-(2-(D-galactose)methylmethacryl-ate)](P(MACPTS-co-MAG...A drug carrier system of the hybrid nanoparticles based on the redox-responsive P[(2-((2-((camptothecin)-oxy)ethyl)disulfanyl)ethylmethacrylate)-co-(2-(D-galactose)methylmethacryl-ate)](P(MACPTS-co-MAGP)) and AgNPs is developed to deliver the anti-cancer drug camptothecin(CPT) and monitor the drug release by the recovery of the fluorescence of CPT. CPT is linked to the polymer sidechains via a redox-responsive disulfide bond, attaching on the surface of AgNPs and leading to the quenching of CPT fluorescence( "off" state) due to the nanoparticle surface energy transfer(NSET) effect.Upon the exposure to glutathione(GSH), the disulfide bond is cleaved to release CPT, resulting in the recovery of the fluorescence of CPT("on" state). The system offers a platform to track the CPT delivery and releasing in real time展开更多
The origins of controlled release drug delivery could be dated back to the 1950s.The Spansule technology was developed to deliver a drug for 12 h in 1952.Compared with taking a drug every 6 h or every8 h,twice-a-day f...The origins of controlled release drug delivery could be dated back to the 1950s.The Spansule technology was developed to deliver a drug for 12 h in 1952.Compared with taking a drug every 6 h or every8 h,twice-a-day formulation was revolutionary in improving the patients’compliance and convenience1.Since then,advances in drug delivery technologies have introduced numerous formulations展开更多
Dr.Jianxin Wang is a professor of pharmaceutics at Fudan University,School of Pharmacy.He received his Ph.D.in pharmaceutics from West China University of Medical Sciences in 1999.He worked for Shanghai Institute of C...Dr.Jianxin Wang is a professor of pharmaceutics at Fudan University,School of Pharmacy.He received his Ph.D.in pharmaceutics from West China University of Medical Sciences in 1999.He worked for Shanghai Institute of Chinese Materia Medica from July 1999 to April 2005.Dr.Wang became a faculty member of School of Pharmacy,Fudan University in 2005.He worked as a visiting scholar in the College of Pharmacy,展开更多
Barth syndrome(BTHS) is a mitochondrial disorder characterized by cardiomyopathy and skeletal muscle weakness. Disease results from mutations in the tafazzin(TAZ) gene, encoding a phospholipid transacylase. Defect...Barth syndrome(BTHS) is a mitochondrial disorder characterized by cardiomyopathy and skeletal muscle weakness. Disease results from mutations in the tafazzin(TAZ) gene, encoding a phospholipid transacylase. Defective tafazzin activity results in an aberrant cardiolipin(CL) profile. The feasibility of restoring the intracellular CL profile was tested by in vivo administration of exogenous CL in nanodisk(ND) delivery particles. Ninety mg/kg CL(as ND)was administered to doxycycline-inducible taz shRNA knockdown(KD) mice once a week. After 10 weeks of CLND treatment, the mice were sacrificed and tissues harvested. Liquid chromatography-mass spectrometry of extracted lipids revealed that CL-ND administration failed to alter the CL profile of taz KD or WT mice. Thus, although CL-ND were previously shown to be an effective means of delivering CL to cultured cells, this effect does not extend to an in vivo setting. We conclude that CL-ND administration is not a suitable therapy option for BTHS.展开更多
Polysaccharide-based composite materials(beads) containing silver nanoparticles(AgNPs) were successfully prepared.Hydrogel beads acted as an efficient vehicle for Ag* delivery.Beads promoted the AgNPs protection ...Polysaccharide-based composite materials(beads) containing silver nanoparticles(AgNPs) were successfully prepared.Hydrogel beads acted as an efficient vehicle for Ag* delivery.Beads promoted the AgNPs protection and inhibited their aggregation.Antimicrobial assays showed that the beads/AgNPs concentration can be modulated to deliver an amount of Ag* necessary for kill Escherichia coli cells.展开更多
The rapid diffusion of nanoparticles (NPs) through mucus layer is critical for efficient transportation of NPs-loaded drug delivery system. To understand how the physical and surface properties of NPs affect their d...The rapid diffusion of nanoparticles (NPs) through mucus layer is critical for efficient transportation of NPs-loaded drug delivery system. To understand how the physical and surface properties of NPs affect their diffusion in mucus, we have developed a coarse-grained molecular dynamics model to study the diffusion of NPs in modeled mucus layer. Both steric obstruction and hydrodynamic interaction are included in the model capable of capturing the key characteristics of NPs' diffusion in mucus. The results show that both particle size and surface properties significantly affect the diffusivities of NPs in mucus. Furthermore, we find rodlike NPs can gain a higher diffusivity than spherical NPs with the same hydrodynamic diameter. In addition, the disturbed environment can enhance the diffusivity of NPs. Our findings can be utilized to design mucus penetrating NPs for targeted drug delivery system.展开更多
基金supported by NSFC (no. 30700151)Academic Innovation Incubation Program from UESTC (no. Y02018023601062)in part by the Fujii-Otsuka International Scientific Exchange Fund from Tokushima University of Japan (795001002b)
文摘The use of nanotechnology in drug delivery is a rapidly expanding field. Biodegradable or nontoxic nanomaterials have the most promising application potentials in nanomedicine.
基金supportedby Shanghai Municipal Natural Science Foundation(No.17ZR1406600,China)Science and Technology Commission of Shanghai Municipality(No.10DZ2220500,China)+1 种基金The Shanghai Committee of Science and Technology(Grant No.11DZ2260600,China)National Natural Science Foundation of China(Grant No.81973700)
文摘A light-switchable transgene system called LightOn gene expression system could regulate gene expression with a high on/off ratio under blue light,and have great potential for spatiotemporally controllable gene expression.We developed a nanoparticle drug delivery system(NDDS)to achieve tumor microenvironment-responsive and targeted delivery of diphtheria toxin A(DTA)fragment-encoded plasmids to tumor sites.The expression of DTA was induced by exposure to blue light.Nanoparticles composed of polyethylenimine and vitamin E succinate linked by a disulfide bond,and PEGylated hyaluronic acid modified with RGD peptide,accumulated in tumor tissues and were actively internalized into 4 T1 cells via dual targeting to CD44 andαvβ3 receptors.The LightOn gene expression system was able to control target protein expression through regulation of the intensity or duration of blue light exposure.In vitro studies showed that lisht-induced DTA expression reduced 4 T1 cell viability and induced apoptosis.Furthermore,the LightOn gene expression system enabled spatiotemporal control of the expression of DTA in a mouse 4 T1 tumor xenogratt model,which resulted in excellent antitumor effects,reduced tumor angiogenesis,and no systemic toxicity.The combination of the LightOn gene expression system and NDDS may be an effective strategy for treatment of breast cancer.
基金Funded by the National Nature Science Foundation of China(No.51273156)the Open Foundation of Hubei key laboratory of Purification and Application of Plant Anti-cancer Active Ingredients(No.HLPAI2014005)
文摘Novel insulin-loaded nanoparticles based on hydroxypropyl-β-cyclodextrin modified carboxymethyl chitosan(CMC-HP-β-CD) were prepared to improve the oral bioavailability of insulin. The CMC-HP-β-CD was characterized by FT-IR spectroscopy and 1H-NMR spectra. The insulin-loaded nanoparticles were prepared through crosslinking with calcium ions, and the morphology and size of the prepared nanoparticles were characterized by transmission electron microscopy(TEM) and dynamic light scattering(DLS). Cumulative release in vitro study was performed respectively in simulated gastric medium fluid(SGF, p H=1.2), simulated intestinal fluid(SIF, p H=6.8) and simulated colonic fluid(SCF, p H=7.4). The encapsulation efficiency of insulin was up to 87.14 ± 4.32% through high-performance liquid chromatography(HPLC). Statistics indicated that only 15% of the encapsulated insulin was released from the CMC-HP-β-CD nanoparticles in 36 h in SGF, and about 50% of the insulin could be released from the nanoparticles in SIF, whereas more than 80% was released in SCF. In addition, the solution containing insulin nanoparticles could effectively reduce the blood glucose level of diabetic mice. The cytotoxicity test showed that the samples had no cytotoxicity. CMC-HP-β-CD nanoparticles are promising candidates as potential carriers in oral insulin delivery systems.
基金Supported by the National Natural Science Foundation of China,No.82373800Guangdong Basic and Applied Basic Research Foundation,No.2024A1515011236General Program of Administration of Traditional Chinese Medicine of Guangdong Province,No.20241071.
文摘We summarize the mechanism by which taurine(Tau)inhibits autophagy and induces iron apoptosis in hepatic stellate cells.Tau interacts with autophagy regulates multifunctional proteins,microtubule-associated protein 1 light chain 3 Beta,and autophagy-related gene 5 to inhibit autophagy,binds to ferritin heavy chain 1 and nuclear receptor coactivator 4 to trigger ferritin autophagy,and interacts with glutathione peroxidase 4 to promote iron apoptosis.There is a solid rationale for developing Tau-based therapies targeting autophagy and ferroptosis regulation.From a pharmaceutical point of view,there are certain requirements for Tau protein delivery systems,such as loading efficiency,stability,and targeting.Nanomaterials should also contain a hydrophilic motif similar to Tau to optimize loading efficiency.Since Tau is a hydrophilic molecule with high water solubility,liposomes,micelles,and amphiphilic polymer nanoparticles may represent a superior choice.The nanostructure of the liposome includes a water region and a lipid membrane to sequester hydrophilic and hydrophobic drugs,respectively,whereas Tau is expected to be loaded into the water region.In addition,a representative method of actively targeting hematopoietic stem cells is introduced.A Tau-based method for the treatment of liver fibrosis is proposed based on the formulation of common liposomes(lecithin plus cholesterol).
基金partly supported by a graduate fellowship from China Scholarship Council(Grant No.201708340071)partly supported by a Career Catalyst Research Grant(Grant No.18548293)from the Susan G.Komen Foundation+1 种基金a Cancer Research Grant from the Mary Kay Foundationa Research Grant from the Elsa U.Pardee Foundation。
文摘Neutrophils,the most abundant leukocytes in human blood,are essential fighter immune cells against microbial infection.Based on the finding that neutrophils can either restrict or promote cancer progression,tumor-associated neutrophils(TAN)are classified into anti-tumor N1 and pro-tumor N2 subsets.One of the major mechanisms underlying the tumor-promoting function of N2-TANs is suppression of adaptive immune cells,in particular,cytotoxic T lymphocytes.Currently,no established methodologies are available that can unequivocally distinguish immunosuppressive TANs and granulocytic/polymorphonuclear myeloid-derived suppressor cells(G/PMN-MDSC).In view of the critical role of PMN-MDSCs in immune evasion and resistance to cancer immunotherapy,as established from data obtained with diverse cancer models,therapeutic strategies targeting these cells have been actively developed to enhance the efficacy of immunotherapy.Here,we have reviewed the available literature on strategies targeting PMN-MDSCs and summarized the findings into four categories:(1)depletion of existing PMN-MDSCs,(2)blockade of the development of PMNMDSCs,(3)blockade of PMN-MDSC recruitment,(4)inhibition of immunosuppressive function.Owing to their high mobility to inflamed organs and ability to trespass the blood-brain barrier,neutrophils are outstanding candidate carriers in nanoparticle-based therapies.Another attractive application of neutrophils in cancer therapy is the use of neutrophil membrane-derived nanovesicles as a surrogate of extracellular vesicles for more efficient and scalable drug delivery.In the second part of the review,we have highlighted recent advances in the field of neutrophil-based cancer drug delivery.Overall,we believe that neutrophil-based therapeutics are a rapidly growing area of cancer therapy with significant potential benefits.
基金the National Basic Research program of China (No.2005CB623903).
文摘A novel pH-sensitive nanoparticle drug delivery system (DDS) derived fl om natural polysaccharide pullulan for doxorubicin (DOX) release was prepared.Pullulan was functionalized by successive carboxymethylization and amidation to introduce hydrazide groups.DOX was then grafted onto pullulan backbone through the pH-sensitive hydrazone bond to form a pullulan/DOX conjugate.This conjugate self-assembled to form nano-sized particles in aqueous solution as a result of the hydrophobic interaction of the DOX.Trans...
基金Funded by the National Natural Science Foundation of China(No.50973088)
文摘Nanoparticles conjugated with antibody were designed as active drug delivery system to reduce the toxicity and side effects of drugs for acute myeloid leukemia(AML).Moreover,methotrexate(MTX)was chosen as modeldrug and encapsulate within folic acid modified carboxymethylchitosan(FACMCS)nanoparticles through self-assembling.The chemicalstructure,morphology,release and targeting of nanoparticles were characterized by routine detection.It is demonstrated that the mean diameter is about 150 nm,the release rate increases with the decreasing of p H,the binding rate of CD33 antibody and FA-CMCS nanoparticles is about 5:2,and nanoparticles can effectively bind onto HL60 cells in vitro.The experimentalresults indicate that the FA-CMCS nanoparticles conjugated with antibody may be used as a potentialp Hsensitive drug delivery system with leukemic targeting properties.
文摘OBJECTIVE To review the application of nanoparticles modified with angiopep-2,providing theoretical guidance for the diagnosis and treatment of glioma. METHODS According to domestic and foreign research reports of nanoparticles modified with angiopep-2 in recent years,the application in the diagnosis and treatment of glioma was summarized and analyzed. RESULTS Angiopep-2 can be modified to the surface of nanoparticles loaded with imaging agents or chemotherapeutic agents,which can significantly improve the imaging effect of glioma and achieve targeted drug delivery. CONCLUSION Angiopep-2 exhibits a high brain penetration capability in blood brain barrier and in glioma cells. The nanoparticles modified with angiopep-2 can delivery various imaging agents and chemotherapeutic agents to glioma cells,the dual-targeting delivery systems can provide theoretical guidance for the diagnosis and treatment of glioma.
基金Research Fund of the University of Macao(Grant No.MYRG 208(Y1-L4)-ICMS11-WYT)
文摘The recent advances in nanoscience and nanotechnology have greatly facilitated the development of nanoparticle drug delivery system. A nanoparticle drug delivery system of silymarin will improve its poor solubility in water and oil, thus enhancing its bioavailability. A variety of nanoparticle formulations of silymarin such as solid lipid nanoparticles, microemulsion and self-emulsifying drug delivery system, and liposomes have been extensively investigated. This paper reviews the advances of these formulations on their preparation and characterization, absorption and bioavailability, as well as in vivo and in vitro studies, in order to provide an assessment of current research for further pharmaceutical studies of silymarin.
基金supported by the National Natural Science Foundation of China(No. 21574037)the"100 Talents" Program of Hebei Province, China(No. E2014100004)+2 种基金the Natural Science Foundation of Hebei Province(Nos. B2015202330, B2017202051)the Program for Top 100 Innovative Talents in Colleges and Universities of Hebei Province(No.SLRC2017028)the Tianjin Natural Science Foundation(No. 15JCYBJC17500)
文摘A drug carrier system of the hybrid nanoparticles based on the redox-responsive P[(2-((2-((camptothecin)-oxy)ethyl)disulfanyl)ethylmethacrylate)-co-(2-(D-galactose)methylmethacryl-ate)](P(MACPTS-co-MAGP)) and AgNPs is developed to deliver the anti-cancer drug camptothecin(CPT) and monitor the drug release by the recovery of the fluorescence of CPT. CPT is linked to the polymer sidechains via a redox-responsive disulfide bond, attaching on the surface of AgNPs and leading to the quenching of CPT fluorescence( "off" state) due to the nanoparticle surface energy transfer(NSET) effect.Upon the exposure to glutathione(GSH), the disulfide bond is cleaved to release CPT, resulting in the recovery of the fluorescence of CPT("on" state). The system offers a platform to track the CPT delivery and releasing in real time
文摘The origins of controlled release drug delivery could be dated back to the 1950s.The Spansule technology was developed to deliver a drug for 12 h in 1952.Compared with taking a drug every 6 h or every8 h,twice-a-day formulation was revolutionary in improving the patients’compliance and convenience1.Since then,advances in drug delivery technologies have introduced numerous formulations
文摘Dr.Jianxin Wang is a professor of pharmaceutics at Fudan University,School of Pharmacy.He received his Ph.D.in pharmaceutics from West China University of Medical Sciences in 1999.He worked for Shanghai Institute of Chinese Materia Medica from July 1999 to April 2005.Dr.Wang became a faculty member of School of Pharmacy,Fudan University in 2005.He worked as a visiting scholar in the College of Pharmacy,
基金Supported by grants from the Barth Syndrome Foundation to TFthe National Institutes of Health (R37 HL-64159) to RR. Mass spectrometry facility of Washington University is supported by NIH grants P41GM 103422,P30DK020579,P30DK056341, R21HL120760
文摘Barth syndrome(BTHS) is a mitochondrial disorder characterized by cardiomyopathy and skeletal muscle weakness. Disease results from mutations in the tafazzin(TAZ) gene, encoding a phospholipid transacylase. Defective tafazzin activity results in an aberrant cardiolipin(CL) profile. The feasibility of restoring the intracellular CL profile was tested by in vivo administration of exogenous CL in nanodisk(ND) delivery particles. Ninety mg/kg CL(as ND)was administered to doxycycline-inducible taz shRNA knockdown(KD) mice once a week. After 10 weeks of CLND treatment, the mice were sacrificed and tissues harvested. Liquid chromatography-mass spectrometry of extracted lipids revealed that CL-ND administration failed to alter the CL profile of taz KD or WT mice. Thus, although CL-ND were previously shown to be an effective means of delivering CL to cultured cells, this effect does not extend to an in vivo setting. We conclude that CL-ND administration is not a suitable therapy option for BTHS.
基金the financial support (Nos.481424/2010-5 and 308337/2013-1)
文摘Polysaccharide-based composite materials(beads) containing silver nanoparticles(AgNPs) were successfully prepared.Hydrogel beads acted as an efficient vehicle for Ag* delivery.Beads promoted the AgNPs protection and inhibited their aggregation.Antimicrobial assays showed that the beads/AgNPs concentration can be modulated to deliver an amount of Ag* necessary for kill Escherichia coli cells.
基金the financial support from the National Natural Science Foundation of China (No. 11422215, 11272327 and 11672079)supported by the Supercomputing Center of Chinese Academy of Sciences (SC CAS)
文摘The rapid diffusion of nanoparticles (NPs) through mucus layer is critical for efficient transportation of NPs-loaded drug delivery system. To understand how the physical and surface properties of NPs affect their diffusion in mucus, we have developed a coarse-grained molecular dynamics model to study the diffusion of NPs in modeled mucus layer. Both steric obstruction and hydrodynamic interaction are included in the model capable of capturing the key characteristics of NPs' diffusion in mucus. The results show that both particle size and surface properties significantly affect the diffusivities of NPs in mucus. Furthermore, we find rodlike NPs can gain a higher diffusivity than spherical NPs with the same hydrodynamic diameter. In addition, the disturbed environment can enhance the diffusivity of NPs. Our findings can be utilized to design mucus penetrating NPs for targeted drug delivery system.