期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Integrated nanoporous electroporation and sensing electrode array for total dynamic time-domain cardiomyocyte membrane resealing assessment
1
作者 Weiqin Sheng Ying Li +5 位作者 Chunlian Qin Zhonghai Zhang Yuxiang Pan Zhicheng Tong Chong Teng Xinwei Wei 《Bio-Design and Manufacturing》 SCIE EI CAS 2024年第6期972-982,共11页
Intracellular electrophysiological research is vital for biological and medical research.Traditional planar microelectrode arrays(MEAs)have disadvantages in recording intracellular action potentials due to the loose c... Intracellular electrophysiological research is vital for biological and medical research.Traditional planar microelectrode arrays(MEAs)have disadvantages in recording intracellular action potentials due to the loose cell-electrode interface.To investigate intracellular electrophysiological signals with high sensitivity,electroporation was used to obtain intracellular recordings.In this study,a biosensing system based on a nanoporous electrode array(NPEA)integrating electrical perforation and signal acquisition was established to dynamically and sensitively record the intracellular potential of cardiomyocytes over a long period of time.Moreover,nanoporous electrodes can induce the protrusion of cell membranes and enhance cell-electrode interfacial coupling,thereby facilitating effective electroporation.Electrophysiological signals over the entire recording process can be quantitatively and segmentally analyzed according to the signal changes,which can equivalently reflect the dynamic evolution of the electroporated cardiomyocyte membrane.We believe that the low-cost and high-performance nanoporous biosensing platform suggested in this study can dynamically record intracellular action potential,evaluate cardiomyocyte electroporation,and provide a new strategy for investigating cardiology pharmacological science. 展开更多
关键词 Nanoporous electrode array(NPEA) Electroporation Intracellular potential recording Cardiomyocyte Membrane resealing
下载PDF
Ultrathin nanoporous metal electrodes facilitate high proton conduction for low-Pt PEMFCs 被引量:3
2
作者 Shuai Shi Xianglong Wen +7 位作者 Qinqin Sang Shuai Yin Kaili Wang Jian Zhang Min Hu Huiming Yin Jia He Yi Ding 《Nano Research》 SCIE EI CSCD 2021年第8期2681-2688,共8页
Design of catalyst layers(CLs)with high proton conductivity in membrane electrode assemblies(MEAs)is an important issue for proton exchange membrane fuel cells(PEMFCs).Herein,an ultrathin catalyst layer was constructe... Design of catalyst layers(CLs)with high proton conductivity in membrane electrode assemblies(MEAs)is an important issue for proton exchange membrane fuel cells(PEMFCs).Herein,an ultrathin catalyst layer was constructed based on Pt-decorated nanoporous gold(NPG-Pt)with sub-Debye-length thickness for proton transfer.In the absence of ionomer incorporation in the CLs,these integrated carbon-free electrodes can deliver maximum mass-specific power density of 198.21 and 25.91 kW·gPt^(-1) when serving individually as the anode and cathode,at a Pt loading of 5.6 and 22.0 pg·cm^(-2),respectively,comparable to the best reported nano-catalysts for PEMFCs.In-depth quantitative experimental measurements and finite-element analyses indicate that improved proton conduction plays a critical role in activation,ohmic and mass transfer polarizations. 展开更多
关键词 nanoporous metal electrode proton exchange membrane fuel cell(PEMFC) ultrathin catalyst layer proton conduction DEALLOYING
原文传递
Highly efficient degradation of acid orangeⅡon a defect-enriched Fe-based nanoporous electrode by the pulsed square-wave method 被引量:1
3
作者 Yuchen Chi Feng Chen +2 位作者 Hangning Wang Fengxiang Qin Haifeng Zhang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第33期40-50,共11页
The degradation of acid orange II(AO II)by a nanoporous Fe-Si-B(NP-Fe Si B)electrode under the pulsed square-wave potential has been investigated in this research.Defect-enriched NP-Fe Si B electrode was fabricated th... The degradation of acid orange II(AO II)by a nanoporous Fe-Si-B(NP-Fe Si B)electrode under the pulsed square-wave potential has been investigated in this research.Defect-enriched NP-Fe Si B electrode was fabricated through dealloying of annealed Fe_(76)Si_(9)B_(15)amorphous ribbons.The results of UV-vis spectra and FTIR indicated that AO II solution was degraded efficiently into unharmful molecules H_(2)O and CO_(2)on NPFe Si B electrode within 5 mins under the square-wave potential of±1.5 V.The degradation efficiency of the NP-Fe Si B electrode remains 98.9%even after 5-time recycling.The large amount of active surface area of the nanoporous Fe Si B electrode with lattice disorders and stacking faults,and alternate electrochemical redox reactions were mainly responsible for the excellent degradation performance of the NP-Fe Si B electrode.The electrochemical pulsed square-wave process accelerated the redox of Fe element in Fe-based nanoporous electrode and promoted the generation of hydroxyl radicals(·OH)with strong oxidizability as predominant oxidants for the degradation of azo dye molecules,which was not only beneficial to improving the catalytic degradation activity,but also beneficial to enhancing the reusability of the nanoporous electrode.This work provides a highly possibility to efficiently degrade azo dyes and broadens the application fields of nanoporous metals. 展开更多
关键词 Amorphous alloy Nanoporous electrode Defects Azo dye Electrochemical degradation Pulsed square-wave potential
原文传递
Improved conversion efficiency of dye-sensitized solar cells by using novel complex nanostructured TiO_2 electrodes
4
作者 ZHANG TianShu LIU LiFeng +2 位作者 YANG Fei WANG Yi KANG JinFeng 《Science China(Technological Sciences)》 SCIE EI CAS 2013年第1期115-119,共5页
A novel complex nanostructured TiO2 electrode and fabrication process were proposed and demonstrated to improve the performance of dye-sensitized solar cells(DSSCs).In the proposed process,a nanoporous TiO2 layer was ... A novel complex nanostructured TiO2 electrode and fabrication process were proposed and demonstrated to improve the performance of dye-sensitized solar cells(DSSCs).In the proposed process,a nanoporous TiO2 layer was firstly fabricated on the FTO(fluorine-doped tin oxide) conducting substrate by an anodization process,then a nanoparticulate TiO2 film was deposited on the nanoporous TiO2 layer by the screen printed method to form the complex nanostructured TiO2 electrode.The experiments demonstrated that the nanoporous TiO layer can enhance the light scattering,decrease the contact resistance between TiO2 electrode and FTO,and suppress the recombination of I3-ion with the injected electrons of FTO.The process variables are crucial to obtain the optimized performance of DSSCs.By adopting the optimized process,improved conversion efficiency of DSSCs was achieved at AM 1.5 sunlight. 展开更多
关键词 dye-sensitized solar cells conversion efficiency nanoporous TiO2 electrode anodization
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部