期刊文献+
共找到169篇文章
< 1 2 9 >
每页显示 20 50 100
Polarization Raman spectra of graphene nanoribbons
1
作者 许望伟 孙诗杰 +6 位作者 杨慕紫 郝振亮 高蕾 卢建臣 朱嘉森 陈建 蔡金明 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第4期568-573,共6页
The on-surface synthesis method allows the fabrication of atomically precise narrow graphene nanoribbons(GNRs),which bears great potential in electronic applications.Here,we synthesize armchair graphene nanoribbons(AG... The on-surface synthesis method allows the fabrication of atomically precise narrow graphene nanoribbons(GNRs),which bears great potential in electronic applications.Here,we synthesize armchair graphene nanoribbons(AGNRs)and chevron-type graphene nanoribbons(CGNRs)array on a vicinal Au(111112)surface using 10,10′-dibromo-9,9′-bianthracene(DBBA)and 6,12-dibromochrysene(DBCh)as precursors,respectively.This process creates spatially wellaligned GNRs,as characterized by scanning tunneling microscopy.AGNRs show strong Raman linear polarizability for application in optical modulation devices.Different from the distinct polarization of AGNRs,only weak polarization exists in CGNRs polarized Raman spectrum,which suggests that the presence of the zigzag boundary in the nanoribbon attenuates the polarization rate as an important factor affecting the polarization.We analyze the Raman activation mode of CGNRs using the peak polarization to expand the application of the polarization Raman spectroscopy in nanoarray analysis. 展开更多
关键词 graphene nanoribbons polarization Raman spectroscopy scanning tunneling microscopy
下载PDF
Effect of Graphene Nanoribbons (TexasPEG) on locomotor function recovery in a rat model of lumbar spinal cord transection 被引量:2
2
作者 C-Yoon Kim William K. A. Sikkema +7 位作者 Jin Kim Jeong Ah Kim James Walter Raymond Dieter Hyung-Min Chung Andrea Mana James M. Tour Sergio Canavero 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第8期1440-1446,共7页
A sharply transected spinal cord has been shown to be fused under the accelerating influence of membrane fusogens such as polyethylene glycol (PEG) (GEMINI protocol). Previous work provided evidence that this is i... A sharply transected spinal cord has been shown to be fused under the accelerating influence of membrane fusogens such as polyethylene glycol (PEG) (GEMINI protocol). Previous work provided evidence that this is in fact possible. Other fusogens might improve current results. In this study, we aimed to assess the effects of PEGylated graphene nanoribons (PEG-GNR, and called "TexasPEG" when prepared as lwt% dispersion in PEG600) versus placebo (saline) on locomotor function recovery and cellular level in a rat model of spinal cord transection at lumbar segment 1 (L1) level. In vivo and in vitro experiments (n -- 10 per experiment) were designed. In the in vivo experiment, all rats were submitted to full spinal cord transection at L1 level. Five weeks later, behavioral assessment was performed using the Basso Beattie Bresnahan (BBB) locomotor rating scale. Immunohistochemical staining with neuron marker neurofilament 200 (NF200) antibody and astrocyt- ic scar marker glial fibrillary acidic protein (GFAP) was also performed in the injured spinal cord. In the in vitro experiment, the effects of TexasPEG application for 72 hours on the neurite outgrowth of SH-SYSY cells were observed under the inverted microscope. Results of both in vivo and in vitro experiments suggest that TexasPEG reduces the formation of glial scars, promotes the regeneration of neurites, and thereby contributes to the recovery of locomotor function of a rat model of spinal cord transfection. 展开更多
关键词 nerve regeneration spinal cord transfection spinal cord fusion GEMINI TexasPEG graphene nanoribbons
下载PDF
Modulating magnetism of nitrogen-doped zigzag graphene nanoribbons 被引量:2
3
作者 赵尚骞 吕燕 +2 位作者 吕文刚 梁文杰 王恩哥 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第6期507-513,共7页
We present a study of electronic properties of zigzag graphene nanoribbons (ZGNRs) substitutionally doped with nitrogen atoms at a single edge by first principle calculations. We find that the two edge states near t... We present a study of electronic properties of zigzag graphene nanoribbons (ZGNRs) substitutionally doped with nitrogen atoms at a single edge by first principle calculations. We find that the two edge states near the Fermi level sepa- rate due to the asymmetric nitrogen-doping. The ground states of these systems become ferromagnetic because the local magnetic moments along the undoped edges remain and those along the doped edges are suppressed. By controlling the charge-doping level, the magnetic moments of the whole ribbons are modulated. Proper charge doping leads to interest- ing half-metallic and single-edge conducting ribbons which would be helpful for designing graphene-nanoribbon-based spintronic devices in the future. 展开更多
关键词 graphene nanoribbons charge doping SPIN-POLARIZATION spatial localization
下载PDF
Alkyl group functionalization-induced phonon thermal conductivity attenuation in graphene nanoribbons 被引量:1
4
作者 王彩云 鲁爽 +1 位作者 于晓东 李海鹏 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第1期522-526,共5页
We calculated the room-temperature phonon thermal conductivity and phonon spectrum of alkyl group-functionalized zigzag graphene nanoribbons(ZGNRs) with molecular dynamics simulations. The increase in both chain lengt... We calculated the room-temperature phonon thermal conductivity and phonon spectrum of alkyl group-functionalized zigzag graphene nanoribbons(ZGNRs) with molecular dynamics simulations. The increase in both chain length and concentration of alkyl groups caused remarkable reduction of phonon thermal conductivity in functionalized ZGNRs. Phonon spectra analysis showed that functionalization of ZGNR with alkyl functional groups induced phonon–structural defect scattering, thus leading to the reduction of phonon thermal conductivity of ZGNR. Our study showed that surface functionalization is an effective routine to tune the phonon thermal conductivity of GNRs, which is useful in graphene thermal-related applications. 展开更多
关键词 graphene nanoribbons(GNRs) thermal CONDUCTIVITY PHONON spectrum surface FUNCTIONALIZATION molecular dynamics simulations
下载PDF
Negative differential resistance behaviour in N-doped crossed graphene nanoribbons 被引量:1
5
作者 陈灵娜 马松山 +3 位作者 欧阳方平 伍小赞 肖金 徐慧 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第9期531-535,共5页
By using first-principles calculations and nonequilibrium Green's function technique, we study elastic transport properties of crossed graphene nanoribbons. The results show that the electronic transport properties o... By using first-principles calculations and nonequilibrium Green's function technique, we study elastic transport properties of crossed graphene nanoribbons. The results show that the electronic transport properties of molecular junctions can be modulated by doped atoms. Negative differential resistance (NDR) behaviour can be observed in a certain bias region, when crossed graphene nanoribbons are doped with nitrogen atoms at the shoulder, but it cannot be observed for pristine crossed graphene nanoribbons at low biases. A mechanism for the negative differential resistance behaviour is suggested. 展开更多
关键词 transport properties negative differential resistance FIRST-PRINCIPLES crossed graphene nanoribbons
下载PDF
The complex band structure for armchair graphene nanoribbons 被引量:1
6
作者 张留军 夏同生 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第11期548-554,共7页
Using a tight binding transfer matrix method, we calculate the complex band structure of armchair graphene nanoribbons. The real part of the complex band structure calculated by the transfer matrix method fits well wi... Using a tight binding transfer matrix method, we calculate the complex band structure of armchair graphene nanoribbons. The real part of the complex band structure calculated by the transfer matrix method fits well with the bulk band structure calculated by a Hermitian matrix. The complex band structure gives extra information on carrier's decay behaviour. The imaginary loop connects the conduction and valence band, and can profoundly affect the characteristics of nanoscale electronic device made with graphene nanoribbons. In this work, the complex band structure calculation includes not only the first nearest neighbour interaction, but also the effects of edge bond relaxation and the third nearest neighbour interaction. The band gap is classified into three classes. Due to the edge bond relaxation and the third nearest neighbour interaction term, it opens a band gap for N = 3M- 1. The band gap is almost unchanged for N =3M + 1, but decreased for N = 3M. The maximum imaginary wave vector length provides additional information about the electrical characteristics of graphene nanoribbons, and is also classified into three classes. 展开更多
关键词 armchair graphene nanoribbons complex band structure edge bond relaxation third nearest neighbour interaction
下载PDF
Strain effect on transport properties of hexagonal boron—nitride nanoribbons 被引量:1
7
作者 陈风 陈元平 +1 位作者 张迷 钟建新 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第8期489-494,共6页
The transport properties of hexagonal boron-nitride nanoribbons under the uniaxial strain are investigated by the Green's function method. We find that the transport properties of armchair boron-nitride nanoribbon st... The transport properties of hexagonal boron-nitride nanoribbons under the uniaxial strain are investigated by the Green's function method. We find that the transport properties of armchair boron-nitride nanoribbon strongly depend on the strain. In particular, the features of the conductance steps such as position and width are significantly changed by strain. As a strong tensile strain is exerted on the nanoribbon, the highest conductance step disappears and subsequently a dip emerges instead. The energy band structure and the local current density of armchair boron nitride nanoribbon under strain are calculated and analysed in detail to explain these characteristics. In addition, the effect of strain on the conductance of zigzag boron-nitride nanoribbon is weaker than that of armchair boron nitride nanoribbon. 展开更多
关键词 transport properties hexagonal boron-nitride nanoribbons Green's function
下载PDF
Edge-Dependent Electronic and Magnetic Characteristics of Freestanding β_(12)-Borophene Nanoribbons 被引量:1
8
作者 Sahar Izadi Vishkayi Meysam Bagheri Tagani 《Nano-Micro Letters》 SCIE EI CAS 2018年第1期124-136,共13页
This work presents an investigation of nanoribbons cut from β_(12)-borophene sheets by applying the density functional theory. In particular, the electronic and magnetic properties of borophene nanoribbons(BNR) are s... This work presents an investigation of nanoribbons cut from β_(12)-borophene sheets by applying the density functional theory. In particular, the electronic and magnetic properties of borophene nanoribbons(BNR) are studied. It is found that all the ribbons considered in this work behave as metals, which is in good agreement with the recent experimental results. β_(12)-BNR has significant diversity due to the existence of five boron atoms in a unit cell of the sheet. The magnetic properties of the ribbons are strongly dependent on the cutting direction and edge profile. It is interesting that a ribbon with a specific width can behave as a normal or a ferromagnetic metal with magnetization at just one edge or two edges. Spin anisotropy is observed in some ribbons, and the magnetic moment is not found to be the same in both edges in an antiferromagnetic configuration. This effect stems from the edge asymmetry of the ribbons and results in the breaking of spin degeneracy in the band structure. Our findings show that β_(12) BNRs are potential candidates for next-generation spintronic devices. 展开更多
关键词 Borophene nanoribbons Electronic and magnetic properties Density functional theory
下载PDF
Effect of Chemical Doping on the Electronic Transport Properties of Tailoring Graphene Nanoribbons 被引量:1
9
作者 刘洋 夏蔡娟 +3 位作者 张博群 张婷婷 崔焱 胡振洋 《Chinese Physics Letters》 SCIE CAS CSCD 2018年第6期62-65,共4页
The electronic transport properties of a molecular junction based on doping tailoring armchair-type graphene nanoribbons(AGNRs)with different widths are investigated by applying the non-equilibrium Green's function... The electronic transport properties of a molecular junction based on doping tailoring armchair-type graphene nanoribbons(AGNRs)with different widths are investigated by applying the non-equilibrium Green's function formalism combined with first-principles density functional theory.The calculated results show that the width and doping play significant roles in the electronic transport properties of the molecular junction.A higher current can be obtained for the molecular junctions with the tailoring AGNRs with W=11.Furthermore,the current of boron-doped tailoring AGNRs with widths W=7 is nearly four times larger than that of the undoped one,which can be potentially useful for the design of high performance electronic devices. 展开更多
关键词 Effect of Chemical Doping on the Electronic Transport Properties of Tailoring Graphene nanoribbons
下载PDF
Spin Caloritronic Transport of Tree-Saw Graphene Nanoribbons
10
作者 吕钰卓 赵朋 《Chinese Physics Letters》 SCIE CAS CSCD 2019年第1期48-51,共4页
Using density functional theory combined with non-equilibrium Green's function method, we investigate the spin caloritronic transport properties of tree-saw graphene nanoribbons. These systems have stable ferromag... Using density functional theory combined with non-equilibrium Green's function method, we investigate the spin caloritronic transport properties of tree-saw graphene nanoribbons. These systems have stable ferromagnetic ground states with a high Curie temperature that is far above room temperature and exhibit obvious spin-Seebeck effect. Moreover, thermal colossal magnetoresistance up to 1020% can be achieved by the external magnetic field modulation. The underlying mechanism is analyzed by spin-resolved transmission spectra, current spectra and band structures. 展开更多
关键词 SPIN Caloritronic TRANSPORT Tree-Saw GRAPHENE nanoribbons Density functional theory
下载PDF
Band engineering of B_2H_2 nanoribbons
11
作者 雷宝 张余洋 杜世萱 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第4期305-309,共5页
Freestanding honeycomb borophene is unstable due to the electron-deficiency of boron atoms. B_2H_2 monolayer, a typical borophene hydride, has been predicted to be structurally stable and attracts great attention. Her... Freestanding honeycomb borophene is unstable due to the electron-deficiency of boron atoms. B_2H_2 monolayer, a typical borophene hydride, has been predicted to be structurally stable and attracts great attention. Here, we investigate the electronic structures of B_2H_2 nanoribbons. Based on first-principles calculations, we have found that all narrow armchair nanoribbons with and without mirror symmetry(ANR-s and ANR-as, respectively) are semiconducting. The energy gap has a relation with the width of the ribbon. When the ribbon is getting wider, the gap disappears. The zigzag ribbons without mirror symmetry(ZNR-as) have the same trend. But the zigzag ribbons with mirror symmetry(ZNR-s) are always metallic. We have also found that the metallic ANR-as and ZNR-s can be switched to semiconducting by applying a tensile strain along the nanoribbon. A gap of 1.10 eV is opened under 16% strain for the 11.0-■ ANR-as. Structural stability under such a large strain has also been confirmed. The flexible band tunability of B_2H_2 nanoribbon increases its possibility of potential applications in nanodevices. 展开更多
关键词 borophene HYDRIDE nanoribbons BAND ENGINEERING FIRST-PRINCIPLES CALCULATIONS strain
下载PDF
Sc-Decorated WS_2 Nanoribbons as Hydrogen Storage Media
12
作者 徐斌 王玉生 +3 位作者 宋纳红 张静 李梦 易林 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第1期104-108,共5页
The hydrogen storage behavior of So-decorated WS2 monolayer and WS2 nanoribbons is systematically studied by using first principles calculations based on the density functional theory. The present results indicate tha... The hydrogen storage behavior of So-decorated WS2 monolayer and WS2 nanoribbons is systematically studied by using first principles calculations based on the density functional theory. The present results indicate that an Sedecorated WS2 monolayer is not suitable for storing hydrogen due to the weak interaction between the monolayer WS2 sheet and the Sc atoms. It is found that both the hybridization meeh^nism and the Coulomb attraction make the Sc atoms stably adsorb on the edges of WS2 nanoribbons without clustering. The 2Sc/WS2NRs system can adsorb at most eight H.2 molecules with average adsorption energy of 0.20 eV/H2. The results show that the desorption of H2 is possible by lowering the pressure or by increasing the temperature. 展开更多
关键词 WS on NRS SC it IS Sc-Decorated WS2 nanoribbons as Hydrogen Storage Media of
下载PDF
Anisotropy Engineering Edge Magnetism in Zigzag Honeycomb Nanoribbons
13
作者 李宝玥 曹逸锋 +4 位作者 徐琳 杨光 马治 叶苗 马天星 《Chinese Physics Letters》 SCIE CAS CSCD 2019年第6期83-87,共5页
It has been demonstrated that the zigzag honeycomb nanoribbons exhibit an intriguing edge magnetism. Here the effect of the anisotropy on the edge magnetism in zigzag honeycomb nanoribbons is investigated using two ki... It has been demonstrated that the zigzag honeycomb nanoribbons exhibit an intriguing edge magnetism. Here the effect of the anisotropy on the edge magnetism in zigzag honeycomb nanoribbons is investigated using two kinds of large-scale quantum Monte Carlo simulations. The anisotropy in zigzag honeycomb nanoribbons is characterized by the ratios of nearest-neighbor hopping integrals t_1 in one direction and t_2 in another direction. Considering the electron-electron correlation, it is shown that the edge ferromagnetism could be enhanced greatly as t_2/|t_1|increases from 1 to 3, which not only presents an avenue for the control of this magnetism but is also useful for exploring further novel magnetism in new nano-scale materials. 展开更多
关键词 ANISOTROPY Engineering EDGE MAGNETISM ZIGZAG HONEYCOMB nanoribbons EDGE MAGNETISM
下载PDF
First principle study of edge topological defect-modulated electronic and magnetic properties in zigzag graphene nanoribbons
14
作者 黄露婷 陈铮 +1 位作者 王永欣 卢艳丽 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第10期169-174,共6页
Zigzag graphene nanoribbon (ZGNR) is a promising candidate for next-generation spintronic devices. Development of the field requires potential systems with variable and adjustable electromagnetic properties. Here we... Zigzag graphene nanoribbon (ZGNR) is a promising candidate for next-generation spintronic devices. Development of the field requires potential systems with variable and adjustable electromagnetic properties. Here we show a detailed investigation of ZGNR decorated with edge topological defects (ED-ZGNR) synthesized in laboratory by Ruffieux in 2015 [Pascal Ruffieux, Shiyong Wang, Bo Yang, et al. 2015 Nature 531 489]. The pristine ED-ZGNR in the ground state is an antiferromagnetic semiconductor, and the acquired band structure is significantly changed compared with that of perfect ZGNR. After doping heteroatoms on the edge, the breaking of degeneration of band structure makes the doped ribbon a half-semi-metal, and nonzero magnetic moments are induced. Our results indicate the tunable electronic and magnetic properties of ZGNR by deriving unique edge state from topological defect, which opens a new route to practical nano devices based on ZGNR. 展开更多
关键词 graphene nanoribbons topological defect SPIN EDGE
下载PDF
Spin Caloritronic Transport of (2×1) Reconstructed Zigzag MoS_2 Nanoribbons
15
作者 吕钰卓 赵朋 刘德胜 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第10期74-77,共4页
Using first-principles density functional theory combined with nonequilibrium Green's function method, we inves-tigate the spin caloritronic transport properties of (2×1) reconstructed zigzag MoS2 nanoribbons.... Using first-principles density functional theory combined with nonequilibrium Green's function method, we inves-tigate the spin caloritronic transport properties of (2×1) reconstructed zigzag MoS2 nanoribbons. These systems can exhibit obvious spin Seebeck effect. Furthermore, by tuning the external magnetic field, a thermal giant magnetoresistance up to 10^4% can be achieved. These spin caloritronic transport properties are understood in terms of spin-resolved transmission spectra, band structures, and the symmetry analyses of energy bands around the Fermi level. 展开更多
关键词 Spin Caloritronic Transport of AP MC Reconstructed Zigzag MoS2 nanoribbons SEEBECK
下载PDF
Electronic and transport properties of V-shaped defect zigzag MoS_2 nanoribbons
16
作者 李新梅 龙孟秋 +2 位作者 崔丽玲 肖金 徐慧 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第4期557-561,共5页
Based on the nonequilibrium Green's function (NEGF) in combination with density functional theory (DFT) calcu- lations, we study the electronic structures and transport properties of zigzag MoS2 nanoribbons (ZM... Based on the nonequilibrium Green's function (NEGF) in combination with density functional theory (DFT) calcu- lations, we study the electronic structures and transport properties of zigzag MoS2 nanoribbons (ZMNRs) with V-shaped vacancy defects on the edge. The vacancy formation energy results show that the zigzag vacancy is easier to create on the edge of ZMNR than the armchair vacancy. Both of the defects can make the electronic band structures of ZMNRs change from metal to semiconductor. The calculations of electronic transport properties depict that the currents drop off clearly and rectification ratios increase in the defected systems. These effects would open up possibilities for their applications in novel nanoelectronic devices. 展开更多
关键词 transport property zigzag MoS2 nanoribbons V-shaped defect FIRST-PRINCIPLES
下载PDF
One-dimensional method of investigating the localized states in armchair graphene-like nanoribbons with defects
17
作者 谢阳 胡智健 +2 位作者 丁文浩 吕小龙 谢航 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第12期516-525,共10页
In this paper we propose a type of new analytical method to investigate the localized states in the armchair graphene-like nanoribbons. The method is based on the tight-binding model and with a standing wave assumptio... In this paper we propose a type of new analytical method to investigate the localized states in the armchair graphene-like nanoribbons. The method is based on the tight-binding model and with a standing wave assumption. The system of armchair graphene-like nanoribbons includes the armchair supercells with arbitrary elongation-type line defects and the semi-infinite nanoribbons. With this method, we analyze many interesting localized states near the line defects in the graphene and boron-nitride nanoribbons. We also derive the analytical expressions and the criteria for the localized states in the semi-infinite nanoribbons. 展开更多
关键词 graphene nanoribbons tight-binding model energy band localized states
下载PDF
Facile and fast growth of high mobility nanoribbons of ZrTe5
18
作者 王璟岳 牛晶晶 +3 位作者 李新祺 马秀梅 姚湲 吴孝松 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第6期69-74,共6页
Recently, ZrTe5 has received a lot of attention as it exhibits various topological phases, such as weak and strong topological insulators, a Dirac semimetal, a three-dimensional quantum Hall state, and a quantum spin ... Recently, ZrTe5 has received a lot of attention as it exhibits various topological phases, such as weak and strong topological insulators, a Dirac semimetal, a three-dimensional quantum Hall state, and a quantum spin Hall insulator in the monolayer limit. While most of studies have been focused on the three-dimensional bulk material, it is highly desired to obtain nanostructured materials due to their advantages in device applications. We report the synthesis and characterizations of ZrTe5 nanoribbons. Via a silicon-assisted chemical vapor transport method, long nanoribbons with thickness as thin as 20 nm can be grown. The growth rate is over an order of magnitude faster than the previous method for the bulk crystals.Moreover, transport studies show that the nanoribbons are of low unintentional doping and high carrier mobility, over30000 cm2/V·s, which enable reliable determination of the Berry phase of π in the ac plane from quantum oscillations. Our method holds great potential in growth of high quality ultra-thin nanostructures of ZrTe5. 展开更多
关键词 ZrTe5 nanoribbons GROWTH chemical vapor transport MOBILITY
下载PDF
Metallic Graphene Nanoribbons
19
作者 Sheng‑Yi Xie Xian‑Bin Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第3期194-196,共3页
Isolated graphene nanoribbons(GNRs)usually have energy gaps,which scale with their widths,owing to the lateral quantum confinement effect of GNRs.The absence of metallic GNRs limits their applications in device interc... Isolated graphene nanoribbons(GNRs)usually have energy gaps,which scale with their widths,owing to the lateral quantum confinement effect of GNRs.The absence of metallic GNRs limits their applications in device interconnects or being one-dimensional physics platform to research amazing properties based on metallicity.A recent study published in Science provided a novel method to produce metallic GNRs by inserting a symmetric superlattice into other semiconductive GNRs.This finding will broader the applications of GNRs both in nanoelectronics and fundamental science. 展开更多
关键词 GRAPHENE nanoribbons Quantum confinement effect Supperlattice
下载PDF
Fabrication of sulfur-doped cove-edged graphene nanoribbons on Au(111)
20
作者 杨欢 高艺璇 +7 位作者 牛雯慧 常霄 黄立 刘俊治 麦亦勇 冯新亮 杜世萱 高鸿钧 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第7期484-488,共5页
The on-surface synthesis from predesigned organic precursors can yield graphene nanoribbons(GNRs)with atomically precise widths,edge terminations and dopants,which facilitate the tunning of their electronic structures... The on-surface synthesis from predesigned organic precursors can yield graphene nanoribbons(GNRs)with atomically precise widths,edge terminations and dopants,which facilitate the tunning of their electronic structures.Here,we report the synthesis of novel sulfur-doped cove-edged GNRs(S-CGNRs)on Au(111)from a specifically designed precursor containing thiophene rings.Scanning tunneling microscopy and non-contact atomic force microscopy measurements elucidate the formation of S-CGNRs through subsequent polymerization and cyclodehydrogenation,which further result in crosslinked branched structures.Scanning tunneling spectroscopy results reveal the conduction band minimum of the S-CGNR locates at 1.2 e V.First-principles calculations show that the S-CGNR possesses an energy bandgap of 1.17 e V,which is evidently smaller than that of an undoped cove-edged GNR(1.7 e V),suggesting effective tuning of the bandgap by introducing sulfur atoms.Further increasing the coverage of precursors close to a monolayer results in the formation of linear-shaped S-CGNRs.The fabrication of S-CGNRs provides one more candidate in the GNR toolbox and promotes the future applications of heteroatom-doped graphene nanostructures. 展开更多
关键词 on-surface synthesis sulfur-doped cove-edged graphene nanoribbons scanning tunneling microscopy non-contact atomic force microscopy
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部