This work aims to elucidate the impact of aluminum-content on microstructure and deformation mechanisms of transformation-induced plasticity(TRIP) steels through macroscale and nanoscale deformation experiments comb...This work aims to elucidate the impact of aluminum-content on microstructure and deformation mechanisms of transformation-induced plasticity(TRIP) steels through macroscale and nanoscale deformation experiments combined with post-mortem electron microscopy of the deformed region.The solid-state transformation-induced mechanical deformation varied with the Al contents,and influenced tensile strength-ductility combination.Steels with 2–4 wt% Al were characterized by TRIP effect.In contrast to 2 Al-TRIP and 4 Al-TRIP steels,twinning-induced plasticity(TWIP) was also observed in conjunction with strain-induced martensite in 6 Al-TRIP steel.This behavior is attributed to the increase in stacking fault energy with the increase of Al content and stability of austenite,which depends on the local chemical variation.The study addresses the knowledge gap with regard to the effect of Al content on austenite stability in medium-Mn TRIP steels.This combination is expected to potentially enable cost-effective alloy design with high strength-high ductility condition.展开更多
Cold processing of magnesium (Mg) alloys is a challenge because Mg has a hexagonal close-packed (HCP) lattice with limited slip systems, which makes it difficult to plastically deform at low temperature. To addres...Cold processing of magnesium (Mg) alloys is a challenge because Mg has a hexagonal close-packed (HCP) lattice with limited slip systems, which makes it difficult to plastically deform at low temperature. To address this challenge, a combination of annealing of as-cast alloy and multi-axial forging was adopted ro obtain isotropic ultrafine-grained (UFG) structure in a lean Mg-2Zn-2Gd alloy with high strength (yield strength: ~227 MPa)-high ductility (% elongation: ~30%) combination. This combination of strength and ductility is excellent for the lean alloy, enabling an understanding of deformation processes in a formable high strength Mg-rare earth alloy. The nanoscale deformation behavior was studied via nanoindentation and electron microscopy, and the behavior was compared with its low strength (yield strength: ~46 MPa) - low ductility (% elongation: ~7%) coarse-grained (CG) counterpart. In the UFG alloy, extensive dislocation slip was an active deformation mechanism, while in the CG alloy, mechanical twinning occurred. The differences in the deformation mechanisms of UFG and CG alloys were reflected in the discrete burst in the load-displacement plots. The deformation of Mg-2Zn-2Gd alloys was significantly influenced by the grain structure, such that there was change in the deformation mechanism from dislocation slip (non-basal slip) to nanoscale twins in the CG structure. The high plasticity ofUFG Mg alloy involved high dislocation activity and change in activation volume.展开更多
基金supported financially by the National Science Foundation,USA (No.#DMR-MRI 1530891)
文摘This work aims to elucidate the impact of aluminum-content on microstructure and deformation mechanisms of transformation-induced plasticity(TRIP) steels through macroscale and nanoscale deformation experiments combined with post-mortem electron microscopy of the deformed region.The solid-state transformation-induced mechanical deformation varied with the Al contents,and influenced tensile strength-ductility combination.Steels with 2–4 wt% Al were characterized by TRIP effect.In contrast to 2 Al-TRIP and 4 Al-TRIP steels,twinning-induced plasticity(TWIP) was also observed in conjunction with strain-induced martensite in 6 Al-TRIP steel.This behavior is attributed to the increase in stacking fault energy with the increase of Al content and stability of austenite,which depends on the local chemical variation.The study addresses the knowledge gap with regard to the effect of Al content on austenite stability in medium-Mn TRIP steels.This combination is expected to potentially enable cost-effective alloy design with high strength-high ductility condition.
文摘Cold processing of magnesium (Mg) alloys is a challenge because Mg has a hexagonal close-packed (HCP) lattice with limited slip systems, which makes it difficult to plastically deform at low temperature. To address this challenge, a combination of annealing of as-cast alloy and multi-axial forging was adopted ro obtain isotropic ultrafine-grained (UFG) structure in a lean Mg-2Zn-2Gd alloy with high strength (yield strength: ~227 MPa)-high ductility (% elongation: ~30%) combination. This combination of strength and ductility is excellent for the lean alloy, enabling an understanding of deformation processes in a formable high strength Mg-rare earth alloy. The nanoscale deformation behavior was studied via nanoindentation and electron microscopy, and the behavior was compared with its low strength (yield strength: ~46 MPa) - low ductility (% elongation: ~7%) coarse-grained (CG) counterpart. In the UFG alloy, extensive dislocation slip was an active deformation mechanism, while in the CG alloy, mechanical twinning occurred. The differences in the deformation mechanisms of UFG and CG alloys were reflected in the discrete burst in the load-displacement plots. The deformation of Mg-2Zn-2Gd alloys was significantly influenced by the grain structure, such that there was change in the deformation mechanism from dislocation slip (non-basal slip) to nanoscale twins in the CG structure. The high plasticity ofUFG Mg alloy involved high dislocation activity and change in activation volume.