Multilayered ZrAlN/ZrB2 coatings containing alternating bilayer periods were synthesized by dc magnetron sputtering technique. The intensities of ZrN (111) or ZrN (200) textures in the structure of the nanolayers ...Multilayered ZrAlN/ZrB2 coatings containing alternating bilayer periods were synthesized by dc magnetron sputtering technique. The intensities of ZrN (111) or ZrN (200) textures in the structure of the nanolayers depended on the bilayer period as well as N2 gas partial pressure during deposition. Nanoindentation testing showed that hardness and internal stress of the nanolayers varied with the bilayer period and crystallographic orientation in the coatings. The hardness of the nanolayers with bilayer periods of 3-6 nm was enhanced (-27%) over the rule-of-mixture value. A low percent of N2 in processing gas was proved to be benefitial to the synthesis of high hard nanoscale multilayered coatings.展开更多
基金This work is supported by the Applied Basic Key Project of Tianjin under grant No. 043801011 the National Natural Science Foundation of China (No. 50472026) This work is also supported by Joint Project of Tianjin Municipal Universities, Nankai University and Tianjin University, State Education Ministry under grant No. GJDF01.
文摘Multilayered ZrAlN/ZrB2 coatings containing alternating bilayer periods were synthesized by dc magnetron sputtering technique. The intensities of ZrN (111) or ZrN (200) textures in the structure of the nanolayers depended on the bilayer period as well as N2 gas partial pressure during deposition. Nanoindentation testing showed that hardness and internal stress of the nanolayers varied with the bilayer period and crystallographic orientation in the coatings. The hardness of the nanolayers with bilayer periods of 3-6 nm was enhanced (-27%) over the rule-of-mixture value. A low percent of N2 in processing gas was proved to be benefitial to the synthesis of high hard nanoscale multilayered coatings.