期刊文献+
共找到219篇文章
< 1 2 11 >
每页显示 20 50 100
Hollow Gradient-Structured Iron-Anchored Carbon Nanospheres for Enhanced Electromagnetic Wave Absorption 被引量:5
1
作者 Cao Wu Jing Wang +14 位作者 Xiaohang Zhang Lixing Kang Xun Cao Yongyi Zhang Yutao Niu Yingying Yu Huili Fu Zongjie Shen Kunjie Wu Zhenzhong Yong Jingyun Zou Bin Wang Zhou Chen Zhengpeng Yang Qingwen Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第1期144-160,共17页
In the present paper,a microwave absorber with nanoscale gradient structure was proposed for enhancing the electromagnetic absorption performance.The inorganic-organic competitive coating strategy was employed,which c... In the present paper,a microwave absorber with nanoscale gradient structure was proposed for enhancing the electromagnetic absorption performance.The inorganic-organic competitive coating strategy was employed,which can effectively adjust the thermodynamic and kinetic reactions of iron ions during the solvothermal process.As a result,Fe nanoparticles can be gradually decreased from the inner side to the surface across the hollow carbon shell.The results reveal that it offers an outstanding reflection loss value in combination with broadband wave absorption and flexible adjustment ability,which is superior to other relative graded distribution structures and satisfied with the requirements of lightweight equipment.In addition,this work elucidates the intrinsic microwave regulation mechanism of the multiscale hybrid electromagnetic wave absorber.The excellent impedance matching and moderate dielectric parameters are exhibited to be the dominative factors for the promotion of microwave absorption performance of the optimized materials.This strategy to prepare gradient-distributed microwave absorbing materials initiates a new way for designing and fabricating wave absorber with excellent impedance matching property in practical applications. 展开更多
关键词 Gradient structures Carbon nanospheres Electromagnetic wave absorption Impedance matching
下载PDF
Rationally designed hollow carbon nanospheres decorated with S,P co-doped NiSe_(2) nanoparticles for high-performance potassium-ion and lithium-ion batteries 被引量:3
2
作者 Jiajia Ye Zizhong Chen +4 位作者 Zhiqiang Zheng Zhanghua Fu Guanghao Gong Guang Xia Cheng Hu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期401-411,I0011,共12页
Hollow nanostructures with external shells and inner voids have been proved to greatly shorten the transport distance of ions/electrons and buffer volume change,especially for the large-sized potassium-ions in seconda... Hollow nanostructures with external shells and inner voids have been proved to greatly shorten the transport distance of ions/electrons and buffer volume change,especially for the large-sized potassium-ions in secondary batteries.In this work,hollow carbon(HC) nanospheres embedded with S,P co-doped NiSe_(2)nanoparticles are fabricated by "drop and dry" and "dissolving and precipitation" processes to form Ni(OH)2nanocrystals followed by annealing with S and P dopants to form nanoparticles.The resultant S,P-NiSe_(2)/HC composite exhibits excellent cyclic performance with 131.6 mA h g^(-1)at1000 mA g^(-1)after 3000 cycles for K^(+)storage and a capacity of 417.1 mA h g^(-1)at 1000 mA g^(-1)after1000 cycles for Li^(+)storage.K-ion full cells are assembled and deliver superior cycling stability with a ca pacity of 72.5 mA h g^(-1)at 200 mA g^(-1)after 500 cycles.The hollow carbon shell with excellent electrical conductivity effectively promotes the transporta tion and tolerates large volume variation for both K^(+)and Li^(+).Density functional theory calculations confirm that the S and P co-doping NiSe_(2) enables stronger adsorption of K^(+)ions and higher electrical conductivity that contributes to the improved electrochemical performance. 展开更多
关键词 S P co-doping NiSe_(2)nanoparticles Hollow carbon nanospheres Potassium-ion batteries Lithium-ion batteries
下载PDF
Sulfur/nitrogen/oxygen tri-doped carbon nanospheres as an anode for potassium ion storage 被引量:3
3
作者 Xiaoyan Chen Wang Zhou +2 位作者 Jilei Liu Yingpeng Wu Zhigang Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期338-347,I0009,共11页
Carbonaceous materials are considered as ideal anode for potassium ion batteries(PIBs)due to their abundant resources and stable physical and chemical properties.However,improvements of reversible capacity and cycle p... Carbonaceous materials are considered as ideal anode for potassium ion batteries(PIBs)due to their abundant resources and stable physical and chemical properties.However,improvements of reversible capacity and cycle performance are still needed,aiming to the practical application.Herein,S/N/O tridoped carbon(SNOC)nanospheres are prepared by in-situ vulcanized polybenzoxazine.The S/N/O tridoped carbon matrix provides abundant active sites for potassium ion adsorption and effectively improves potassium storage capacity.Moreover,the SNOC nanospheres possess large carbon interlayer spacing and high specific surface area,which broaden the diffusion pathway of potassium ions and accelerate the electron transfer speed,resulting in excellent rate performance.As an anode for PIBs,SNOC shows attractive rate performance(438.5 mA h g^(-1) at 50 mA g^(-1) and 174.5 mA h g^(-1) at2000 mA g^(-1)),ultra-high reversible capacity(397.4 mA h g^(-1) at 100 mA g^(-1) after 700 cycles)and ultra-long cycling life(218.9 mA h g^(-1) at 2000 mA g^(-1) after 7300 cycles,123.1 mA h g^(-1) at3000 mA g^(-1) after 16500 cycles and full cell runs for 4000 cycles).Density functional theory calculation confirms that S/N/O tri-doping enhances the adsorption and diffusion of potassium ions,and in-situ Fourier-transform infrared explores explored the potassium storage mechanism of SNOC. 展开更多
关键词 Potassium ion batteries S/N/O tri-doped Carbon nanospheres ANODE
下载PDF
Construction of phosphorus-doping with spontaneously developed selenium vacancies: Inducing superior ion-diffusion kinetics in hollow Cu_(2)Se@C nanospheres for efficient sodium storage
4
作者 Xiaoqing Ma Yadong Li +4 位作者 Xiaojiang Long Hong-chuan Luo Chunping Xu Guangzhao Wang Wenxi Zhao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期227-238,I0007,共13页
Achieving high-efficiency sodium storage in metal selenides is still severely constrained in consideration of their inferior electronic conductivity and inadequate Na^(+)insertion pathways and active sites.Heteroatom ... Achieving high-efficiency sodium storage in metal selenides is still severely constrained in consideration of their inferior electronic conductivity and inadequate Na^(+)insertion pathways and active sites.Heteroatom doping accompanied by spontaneously developed lattice defects can effectively tune electronic structure of metal selenides,which give a strong effect to motivate fast charge transfer and Na^(+)accessibility.Herein,we finely designed and successfully constructed a fascinating phosphorus-doped Cu_(2)Se@C hollow nanosphere with abundant vacancy defects(Cu_(2)P_(x)Se_(1-x)@C)through a combination strategy of selenization of Cu_(2)O nanosphere template,self-polymerization of dopamine,and subsequent phosphorization treatment.Such exquisite composite possesses enriched active sites,superior conductivity,and sufficient Na^(+)insertion channel,which enable much faster Na^(+)diffusion rates and more remarkable pseudocapacitive features,Satisfyingly,the Cu_(2)P_(x)Se_(1-x)@C composites manifest the supernormal sodium-storage capabilities,that is,a reversible capacity of 403.7 mA h g^(-1) at 1.0 A g^(-1) over 100 cycles,and an ultrastable cyclic lifespan over 1000 cycles at 20.0 A g^(-1) with a high capacity-retention of about249.7 mA h g^(-1).The phase transformation of the Cu_(2)P_(x)Se_(1-x)@C involving the intercalation of Na^(+)into Cu_(2)Se and the following conversion of NaCuSe to Cu and Na2Se were further demonstrated through a series of ex-situ characterization methods.DFT results demonstrate that the coexistence of phosphorusdoping and vacancy defects within Cu_(2)Se results in the reduction of Na^(+)adsorption energy from-1.47to-1.56 eV improving the conductivity of Cu_(2)Se to further accelerate fast Na^(+)mobility. 展开更多
关键词 Phosphorus-doping Selenium vacancies Hollow Cu_(2)Se@C nanospheres Anode Sodium storage
下载PDF
Highly Conductive Proton Selectivity Membrane Enabled by Hollow Carbon Sieving Nanospheres for Energy Storage Devices
5
作者 Kang Huang Shuhao Lin +7 位作者 Yu Xia Yongsheng Xia Feiyan Mu Yuqin Lu Hongyan Cao Yixing Wang Weihong Xing Zhi Xu 《Engineering》 SCIE EI CAS CSCD 2023年第9期69-78,共10页
Ion conductive membranes(ICMs)with highly conductive proton selectivity are of significant importance and greatly desired for energy storage devices.However,it is extremely challenging to construct fast proton-selecti... Ion conductive membranes(ICMs)with highly conductive proton selectivity are of significant importance and greatly desired for energy storage devices.However,it is extremely challenging to construct fast proton-selective transport channels in ICMs.Herein,a membrane with highly conductive proton selectivity was fabricated by incorporating porous carbon sieving nanospheres with a hollow structure(HCSNs)in a polymer matrix.Due to the precise ion sieving ability of the microporous carbon shells and the fast proton transport through their accessible internal cavities,this advanced membrane presented a proton conductivity(0.084 S·cm^(-1))superior to those of a commercial Nation 212(N212)membrane(0.033S·cm^(-1))and a pure polymer membrane(0.049 S·cm^(-1)).The corresponding proton selectivity of the membrane(6.68×10^(5) S·min·cm^(-3))was found to be enhanced by about 5.9-fold and 4.3-fold,respectively,compared with those of the N212 membrane(1.13×10^(5) S·min·cm^(-3))and the pure membrane(1.56×10^(5) S·min·cm^(-3)).Low-field nuclear magnetic resonance(LF-NMR)clearly revealed the fast protonselective transport channels enabled by the HCSNs in the polymeric membrane.The proposed membrane exhibited an outstanding energy efficiency(EE)of 84%and long-term stability over 1400 cycles with a0.065%capacity decay per cycle at 120 mA·cm^(-2) in a typical vanadium flow battery(VFB)system. 展开更多
关键词 Ion conductive membrane Hollow carbon sieving nanosphere Proton transport channel Flow battery
下载PDF
Targeting Effect Study of  ̄(3) H-Mitoxantrone Nanosphereson Hepatocellular Carcinoma(HCC) Model in Nude Mice
6
作者 张志荣 廖工铁 侯世祥 《Journal of Chinese Pharmaceutical Sciences》 CAS 1995年第4期181-186,共6页
The distribution of  ̄(3)H-mitoxantrone polybutyl cyanoacrylate nanospheres( ̄(3)H-DHAQ-PBCA-NS)in the viscera,muscle and tumors of human hepatocellular carcinoma (HCC)model in nude mice was studied with liquid scinti... The distribution of  ̄(3)H-mitoxantrone polybutyl cyanoacrylate nanospheres( ̄(3)H-DHAQ-PBCA-NS)in the viscera,muscle and tumors of human hepatocellular carcinoma (HCC)model in nude mice was studied with liquid scintillation counting techniique. The results showed that the  ̄(3)H-DHAQ-PBCA-NS had remarkable liver targeting effect. The content of  ̄(3)H-DHAQ-PBCA-NSin liver and heterotopic liver tumor was found to be 71.31±10. 49% of total amount of drug in animal body. It was also found that the content of  ̄(3)H-DHAQ-PBCA-NS in liver was higher than that in liver tissue, and the content of  ̄(3)H-DHAQ-PBCA-NS in annpit tumor was higher than that in armpit muscle tissue,but had no significant difference;It provides an ideal preparation for the DHAQ admini-stration. 展开更多
关键词 Mitoxantrone nanospheres Liver cancer Human hepatocellular carcinoma model in nude mice Targeted drug delivery system
下载PDF
Continued sustained release of VEGF by PLGA nanospheres modified BAMG stent for the anterior urethral reconstruction of rabbit 被引量:7
7
作者 Ji-Hong Wang Yue-Min Xu +4 位作者 Qiang Fu Lu-Jie Song Chao Li Qin Zhang Ming-Kai Xie 《Asian Pacific Journal of Tropical Medicine》 SCIE CAS 2013年第6期481-484,共4页
Objective:To study the biocompatibility and neovascularization of the PLGA nanospheres wrapped with vascular endothelial growth factor(VEGF).which can improve bladder acellular matrix graft(BAMG) with local continuous... Objective:To study the biocompatibility and neovascularization of the PLGA nanospheres wrapped with vascular endothelial growth factor(VEGF).which can improve bladder acellular matrix graft(BAMG) with local continuous release of VEGF.Methods:A total of 18 rabbit model (length of stenosis:3cm) with anterior urethral stricture were used as experimental animals and divided into three groups.Group A as the control group:Simple BAMG scaffold materials for urethral reconstruction.Group B as the blank group:PLGA microspheres modified BAMG for urethral reconstruction.Group C:PLGA conjugated with VEGF and modified BAMG for the urethral reconstruction.All rabbits underwent urethral angiography after 7 days,15 days,1 month and 3 months after the operation,and one rabbit in each group was sacrificed to be prepared for the organization histologic examination,HE staining,masson staining,CD31,34 and a-SAM immunohistochemical detection in the repaired sites.Results:In group A,significant urethral restenosis occurred in two rabbits after 15 days of the operation,HE and masson staining showed a lot of collagen arranged in the repaired sites,and there were a large number of inflammatory cell infiltration,and there were also CD31,34 in the repaired sites.a-SAM microvascular tag count showed a small amount of microvascular;Croup B showed anastomotic restenosis,HE and masoon staining showed inflammatory cell infiltration and collagen deposition;Group C:urethrography showed lumen patency.There were a small amount of inflammatory cell infiltration after 7 and 15 days after the operation,and there were also CD31,34 in the repaired sites.The a-SAM microvascular tag count showed many microvascular.And the difference was significant.Conclusions:Anterior urethral reconstruction with sustained-release of VEGF by PLGA nanospheres modified BAMG stents can reduce postoperative restenosis.It can also reduce collagen deposition and scar formation,promote angiogenesis of the repair tissue;therefore it in valuable in the tissue-engineered urethral reconstruction. 展开更多
关键词 Vascular ENDOTHELIAL growth factor PLGA nanospheres BLADDER ACELLULAR matrix graft
下载PDF
SnS_2@C Hollow Nanospheres with Robust Structural Stability as High?Performance Anodes for Sodium Ion Batteries 被引量:8
8
作者 Shuaihui Li Zhipeng Zhao +2 位作者 Chuanqi Li Zhongyi Liu Dan Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第1期241-249,共9页
Constructing unique and highly stable structures with plenty of electroactive sites in sodium storage materials is a key factor for achieving improved electrochemical properties through favorable sodium ion di usion k... Constructing unique and highly stable structures with plenty of electroactive sites in sodium storage materials is a key factor for achieving improved electrochemical properties through favorable sodium ion di usion kinetics. An SnS_2@carbon hollow nanospheres(SnS_2@C) has been designed and fabricated via a facile solvothermal route, followed by an annealing treatment. The SnS_2@C hybrid possesses an ideal hollow structure, rich active sites, a large electrode/electrolyte interface, a shortened ion transport pathway, and, importantly, a bu er space for volume change, generated from the repeated insertion/extraction of sodium ions. These merits lead to the significant reinforcement of structural integrity during electrochemical reactions and the improvement in sodium storage properties, with a high specific reversible capacity of 626.8 mAh g^(-1) after 200 cycles at a current density of 0.2 A g^(-1) and superior high-rate performance(304.4 mAh g^(-1) at 5 A g^(-1)). 展开更多
关键词 SnS2@C HOLLOW nanospheres ANODE materials SODIUM ion BATTERIES
下载PDF
MOF‑Derived CoSe2@N‑Doped Carbon Matrix Confined in Hollow Mesoporous Carbon Nanospheres as High‑Performance Anodes for Potassium‑Ion Batteries 被引量:8
9
作者 Su Hyun Yang Seung‑Keun Park Yun Chan Kang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第1期123-137,共15页
In this work,a novel vacuum-assisted strategy is proposed to homogenously form Metal-organic frameworks within hollow mesoporous carbon nanospheres(HMCSs)via a solid-state reaction.The method is applied to synthesize ... In this work,a novel vacuum-assisted strategy is proposed to homogenously form Metal-organic frameworks within hollow mesoporous carbon nanospheres(HMCSs)via a solid-state reaction.The method is applied to synthesize an ultrafine CoSe2 nanocrystal@N-doped carbon matrix confined within HMCSs(denoted as CoSe2@NC/HMCS)for use as advanced anodes in highperformance potassium-ion batteries(KIBs).The approach involves a solvent-free thermal treatment to form a Co-based zeolitic imidazolate framework(ZIF-67)within the HMCS templates under vacuum conditions and the subsequent selenization.Thermal treatment under vacuum facilitates the infiltration of the cobalt precursor and organic linker into the HMCS and simultaneously transforms them into stable ZIF-67 particles without any solvents.During the subsequent selenization process,the“dual confinement system”,composed of both the N-doped carbon matrix derived from the organic linker and the small-sized pores of HMCS,can effectively suppress the overgrowth of CoSe2 nanocrystals.Thus,the resulting uniquely structured composite exhibits a stable cycling performance(442 mAh g^−1 at 0.1 A g^−1 after 120 cycles)and excellent rate capability(263 mAh g^−1 at 2.0 A g^−1)as the anode material for KIBs. 展开更多
关键词 Metal-organic frameworks Hollow mesoporous carbon nanospheres Potassium-ion batteries Cobalt selenides Electrode materials
下载PDF
Facile synthesis of nanoporous CuS nanospheres for high-performance supercapacitor electrodes 被引量:4
10
作者 Hamid Heydari Seyyed Ebrahim Moosavifard +1 位作者 Mohammad Shahraki Saeed Elyasi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第4期762-767,共6页
In recent years, development of high-performance supercapacitor electrode materials has stimulated a great deal of scientific research. The electrochemical performance of a supercapacitor strongly depends on its mater... In recent years, development of high-performance supercapacitor electrode materials has stimulated a great deal of scientific research. The electrochemical performance of a supercapacitor strongly depends on its material structures. Herein, we report a simple strategy for high-performance supercapacitors by building pseudocapacitive CuS nanospheres with nanoporous structures, nanosized walls(<10 nm) and relatively large specific surface area of 65 m;/g. This electrode demonstrates excellent electrochemical performance including a maximum specific capacitance of 814 F/g at 1 A/g, significant rate capability of 42% capacitance retention at an ultrafast rate of 50 A/g, and outstanding long-term cycling stability at various current densities. The remarkable electrochemical performance of as-prepared nanoporous CuS nanospheres electrode has been attributed to its unique structures that plays a key role in providing short ion and electron diffusion pathways, facilitated ion transport and more active sites for electrochemical reactions. This work sheds a new light on the metal sulfides design philosophy, and demonstrates that nanoporous CuS nanospheres electrode is a promising candidate for application in high-performance supercapacitors. 展开更多
关键词 SUPERCAPACITOR NANOPOROUS CUS nanospheres
下载PDF
Structure and Magnetic Properties of Monodisperse Fe^(3+)-doped CeO_2 Nanospheres 被引量:4
11
作者 Sumalin Phokha Supree Pinitsoontorn Santi Maensiri 《Nano-Micro Letters》 SCIE EI CAS 2013年第4期223-233,共11页
This work reports the study concerning the structure and magnetic properties of undoped CeO_2 and Fe-doped CeO_2(Ce_(1-x) Fe_xO_2, 0.01 ≤ x ≤ 0.07) nanospheres with diameters of 100~200 nm prepared by hydrothermal m... This work reports the study concerning the structure and magnetic properties of undoped CeO_2 and Fe-doped CeO_2(Ce_(1-x) Fe_xO_2, 0.01 ≤ x ≤ 0.07) nanospheres with diameters of 100~200 nm prepared by hydrothermal method using polyvinylpyrrolidone(PVP) as surfactant. The prepared samples were studied by using X-ray diffraction(XRD), Raman spectroscopy, transmission electron microscopy(TEM), high-resolution transmission electron microscopy(HRTEM), X-ray absorption near-edge structure(XANES), and vibrating sample magnetometry(VSM). The XRD results showed that Fe-doped CeO_2 was single-phased with a cubic structure, and with Fe^(3+)successfully substituting in Ce^(4+) sites. Raman spectra showed a redshift of F_(2g) mode that caused by the Fe doping. The samples of both undoped CeO_2 and Fe-doped CeO_2 exhibited room temperature ferromagnetism, and the saturated magnetization(Ms) increased with increasing Fe content until x = 0.05, and then the samples displayed ferromagnetic loops as well as paramagnetic behavior. The roles of Ce^(3+) and Fe^(3+)spin electrons are discussed for the ferromagnetism in the Fe-doped CeO_2. 展开更多
关键词 Cerium oxide nanospheres Dilute magnetic oxide FERROMAGNETISM Oxygen vacancies XANES
下载PDF
Atomic Layer Deposition-Assisted Construction of Binder-Free Ni@N-Doped Carbon Nanospheres Films as Advanced Host for Sulfur Cathode 被引量:3
12
作者 Jun Liu Aixiang Wei +4 位作者 Guoxiang Pan Qinqin Xiong Fang Chen Shenghui Shen Xinhui Xia 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第4期147-160,共14页
Rational design of hybrid carbon host with high electrical conductivity and strong adsorption toward soluble lithium polysulfides is the main challenge for achieving high-performance lithium-sulfur batteries(LSBs).Her... Rational design of hybrid carbon host with high electrical conductivity and strong adsorption toward soluble lithium polysulfides is the main challenge for achieving high-performance lithium-sulfur batteries(LSBs).Herein,novel binder-free Ni@N-doped carbon nanospheres(N-CNSs)films as sulfur host are firstly synthesized via a facile combined hydrothermal-atomic layer deposition method.The cross-linked multilayer N-CNSs films can effectively enhance the electrical conductivity of electrode and provide physical blocking“dams”toward the soluble long-chain polysulfides.Moreover,the doped N heteroatoms and superficial NiO layer on Ni layer can work synergistically to suppress the shuttle of lithium polysulfides by effective chemical interaction/adsorption.In virtue of the unique composite architecture and reinforced dual physical and chemical adsorption to the soluble polysulfides,the obtained Ni@N-CNSs/S electrode is demonstrated with enhanced rate performance(816 mAh g?1 at 2 C)and excellent long cycling life(87%after 200 cycles at 0.1 C),much better than N-CNSs/S electrode and other carbon/S counterparts.Our proposed design strategy offers a promising prospect for construction of advanced sulfur cathodes for applications in LSBs and other energy storage systems. 展开更多
关键词 Atomic layer deposition Nickel N-DOPED carbon nanospheres SULFUR CATHODE Lithium-sulfur batteries
下载PDF
Highly sensitive room-temperature gas sensors based on hydrothermal synthesis of Cr_2O_3 hollow nanospheres 被引量:3
13
作者 李盛 李凤丽 +3 位作者 周少敏 王鹏 程轲 杜祖亮 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第9期3985-3989,共5页
This paper reports that Cr2O3 hollow nanospheres (HNs) were synthesized via a hydrothermal approach and characterized by scanning electron microscopy, x-ray powder diffraction, transmission electron microscopy (TEM... This paper reports that Cr2O3 hollow nanospheres (HNs) were synthesized via a hydrothermal approach and characterized by scanning electron microscopy, x-ray powder diffraction, transmission electron microscopy (TEM), selective area electron diffraction and high resolution TEM, respectively. In addition, the room-temperature (RT) gas sensing properties of Cr2O3 HNs and conventional powders (CPs) were investigated by means of the surface photovoltage technique. The experimental data demonstrate that the RT gas sensor of the as-fabricated HNs reaches below 5 ppm whereas that of the CPs is about 40 ppm, which results from there being much more adsorbed and desorbed oxygen in HNs than in CPs at RT. The as-prepared Cr2O3 HNs could have potential applications as RT nanosensors. 展开更多
关键词 CR2O3 hollow nanospheres gas sensing surface photovoltage
下载PDF
Construction of highly-stable graphene hollow nanospheres and their application in supporting Pt as effective catalysts for oxygen reduction reaction 被引量:2
14
作者 Huaifang Zhang Jubing Zhang +4 位作者 Kunhao Liu Yunqi Zhu Xiaoyu Qiu Dongmei Sun Yawen Tang 《Green Energy & Environment》 SCIE CSCD 2019年第3期245-253,共9页
The construction and surface modification of three-dimensional(3D) graphene structures have been recognized as effective ways to prepare high-performance graphene-based composites in energy-related applications. Herei... The construction and surface modification of three-dimensional(3D) graphene structures have been recognized as effective ways to prepare high-performance graphene-based composites in energy-related applications. Herein, on the basis of well-defined morphology and efficient electron conduction, the 3D highly-stable graphene hollow nanospheres have been synthesized by using sacrificial template method. The asprepared 3D graphene nanospheres exhibit superior mechanical stability, electrochemical stability, and strong hydrophobicity, which may accelerate the emission of H2O in acidic medium-based ORR. Accordingly, the 3D highly-stable graphene nanospheres are used to confine tiny Pt nanoparticles(3Dr-GO@Pt HNSs) for ORR in acidic medium, exhibiting superior activity with 4-electron-transfered pathway. Meanwhile,dramatically improved durability are achieved in terms of both ORR mass activity and electrochemically surface area compared to those of commercial Pt/C. 展开更多
关键词 Sacrificial TEMPLATE method 3D r-GO nanospheres Highly-stable HOLLOW structure Oxygen reduction reaction
下载PDF
Integrated carbon nanospheres arrays as anode materials for boosted sodium ion storage 被引量:3
15
作者 Wangjia Tang Jianbo Wu +2 位作者 Xiuli Wang Xinhui Xia Jiangping Tu 《Green Energy & Environment》 SCIE 2018年第1期50-55,共6页
Developing cost-effective advanced carbon anode is critical for innovation of sodium ion batteries. Herein, we develop a powerful combined method for rational synthesis of free-standing binder-free carbon nanospheres ... Developing cost-effective advanced carbon anode is critical for innovation of sodium ion batteries. Herein, we develop a powerful combined method for rational synthesis of free-standing binder-free carbon nanospheres arrays via chemical bath plus hydrothermal process. Impressively,carbon spheres with diameters of 150-250 nm are randomly interconnected with each other forming highly porous arrays. Positive advantages including large porosity, high surface and strong mechanical stability are combined in the carbon nanospheres arrays. The obtained carbon nanospheres arrays are tested as anode material for sodium ion batteries(SIBs) and deliver a high reversible capacity of 102 mAh g^(-1) and keep a capacity retention of 95% after 100 cycles at a current density of 0.25 A g^(-1) and good rate performance(65 mAh g^(-1) at a high current density of 2 A g^(-1)). The good electrochemical performance is attributed to the stable porous nanosphere structure with fast ion/electron transfer characteristics. 展开更多
关键词 Carbon nanospheres ANODE Sodium ion batteries ARRAYS Porous film
下载PDF
Template-free synthesis of hollow TiO2 nanospheres supported Pt for selective photocatalytic oxidation of benzyl alcohol to benzaldehyde 被引量:2
16
作者 Hongbing Song Zong Liu +5 位作者 Yongjie Wang Na Zhang Xiaofei Qu Kai Guo Meng Xiao Hengjun Gai 《Green Energy & Environment》 SCIE CSCD 2019年第3期278-286,共9页
Heterogeneous photocatalytic system are widely applied to degrade organic pollutants or converse into high value-added chemicals. Both environmental and energy aspects should be considered to improve these chemical pr... Heterogeneous photocatalytic system are widely applied to degrade organic pollutants or converse into high value-added chemicals. Both environmental and energy aspects should be considered to improve these chemical processes, favoring reaction conditions that involve room temperature and ambient O2 pressure. In the present work, hollow titanium dioxide nanospheres were fabricated via template-free method. The prepared samples were characterized by X-ray diffraction, N2 adsorption–desorption isotherms, transmission electron microscopy, and X-ray photoelectron spectroscopy. The photocatalytic activity was evaluated by photocatalytic oxidation of benzyl alcohol to benzaldehyde with visible light under atmospheric pressure at room temperature. The designed hollow structure(2%Pt–TiO2–5) not only exhibited a very high surface area,but also promoted photonic behavior and multiple light scattering, which as an efficient photocatalyst performed moderate conversion(about 20%) and high selectivity(> 99%) for oxidation of benzyl alcohol to benzaldehyde at room temperature with visible light in solvent of toluene.This work suggests that both hollow structure and Pt nanoparticles have great potential for execution of oxidative transformations under visible light. 展开更多
关键词 Titanium dioxide HOLLOW nanospheres Photocatalytic oxidation BENZYL ALCOHOL Visible light
下载PDF
Effective Organochlorine Pesticides Removal from Aqueous Systems by Magnetic Nanospheres Coated with Polystyrene 被引量:2
17
作者 蓝靖 CHENG Yang 赵宗山 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2014年第1期168-173,共6页
In this paper, magnetic nanospheres coated with polystyrene (Fe3O4@PS) were prepared for the removal of organochlorine pesticides from aqueous solutions. The obtained Fe3O4@PS was round shape with diameter of 55... In this paper, magnetic nanospheres coated with polystyrene (Fe3O4@PS) were prepared for the removal of organochlorine pesticides from aqueous solutions. The obtained Fe3O4@PS was round shape with diameter of 55±11 nm. The VSM results illustrated that its higher saturated magnetization was 36.76 emu g^-1 and it could be easily separated from aqueous solutions with a permanent magnet. The adsorption results showed that pesticides could be effectively adsorbed and the adsorption equilibrium time was less than 20 mins. The pseudo-second-order model was suitable to describe the adsorption kinetics. Compared with the Freundlich adsorption model, the adsorption data fitted well with Langmuir model. The effect of salinity and humic acid was also studied and the results illustrated that they could be neglected under optimized conditions. The asobtained sorbent showed a good performance with more than 93.3% pesticides removal in treating actual water samples. 展开更多
关键词 magnetic nanospheres POLYSTYRENE ADSORPTION organochlorine.
下载PDF
High-loading, ultrafine Ni nanoparticles dispersed on porous hollow carbon nanospheres for fast (de)hydrogenation kinetics of MgH_(2) 被引量:2
18
作者 Shun Wang Mingxia Gao +5 位作者 Zhihao Yao Kaicheng Xian Meihong Wu Yongfeng Liu Wenping Sun Hongge Pan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第12期3354-3366,共13页
Magnesium hydride(MgH2) is one of the most promising hydrogen storage materials for practical application due to its favorable reversibility, low cost and environmental benign;however, it suffers from high dehydrogena... Magnesium hydride(MgH2) is one of the most promising hydrogen storage materials for practical application due to its favorable reversibility, low cost and environmental benign;however, it suffers from high dehydrogenation temperature and slow sorption kinetics.Exploring proper catalysts with high and sustainable activity is extremely desired for substantially improving the hydrogen storage properties of MgH2. In this work, a composite catalyst with high-loading of ultrafine Ni nanoparticles(NPs) uniformly dispersed on porous hollow carbon nanospheres is developed, which shows superior catalytic activity towards the de-/hydrogenation of MgH2. With an addition of 5wt% of the composite, which contains 90 wt% Ni NPs, the onset and peak dehydrogenation temperatures of MgH2are lowered to 190 and 242 ℃, respectively. 6.2 wt% H2is rapidly released within 30 min at 250 ℃. The amount of H2that the dehydrogenation product can absorb at a low temperature of 150 ℃ in only 250 s is very close to the initial dehydrogenation value. A dehydrogenation capacity of 6.4wt% remains after 50 cycles at a moderate cyclic regime, corresponding to a capacity retention of 94.1%. The Ni NPs are highly active,reacting with MgH2and forming nanosized Mg2Ni/Mg2NiH4. They act as catalysts during hydrogen sorption cycling, and maintain a high dispersibility with the help of the dispersive role of the carbon substrate, leading to sustainably catalytic activity. The present work provides new insight into designing stable and highly active catalysts for promoting the(de)hydrogenation kinetics of MgH2. 展开更多
关键词 Hydrogen storage materials Nano-catalysis Magnesium hydride Porous hollow carbon nanospheres Ni nanoparticles
下载PDF
Alginate encapsulated mesoporous silica nanospheres as a sustained drug delivery system for the poorly water-soluble drug indomethacin 被引量:2
19
作者 Liang Hu Changshan Sun +5 位作者 Aihua Song Di Chang Xin Zheng Yikun Gao Tongying Jiang Siling Wang 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2014年第4期183-190,共8页
We applied a combination of inorganic mesoporous silica material,frequently used as drug carriers,and a natural organic polymer alginate(ALG),to establish a sustained drug delivery system for the poorly water-soluble ... We applied a combination of inorganic mesoporous silica material,frequently used as drug carriers,and a natural organic polymer alginate(ALG),to establish a sustained drug delivery system for the poorly water-soluble drug Indomethacin(IND).Mesoporous silica nanospheres(MSNs)were synthesized using an organic template method and then functionalized with aminopropyl groups through postsynthesis.After drug loading into the pores of aninopropyl functionalized MSNs(AP-MSNs),IND loaded AP-MSNs(IND-AP-MSNs)were encapsulated by ALG through the ionic interaction.The effects of surface chemical groups and ALG layer on IND release were systematically studied using scanning electron microscopy(SEM),transmission electron microscopy(TEM),nitrogen adsorption,zetapotential analysis and TGA analysis.The surface structure and surface charge changes of the ALG encapsulated AP-MSNs(ALG-AP-MSNs)were also investigated.The results showed that sustained release of IND from the designed drug delivery system was mainly due to the blockage effect from the coated ALG.We believe that this combination will help designing oral sustained drug delivery systems for poorly water-soluble drugs. 展开更多
关键词 INDOMETHACIN Mesoporous silica nanospheres Aminepropyl group ALGINATE Sustained release Poorly water-soluble drug
下载PDF
Covalent organic nanospheres as a fiber coating for solid-phase microextraction of genotoxic impurities followed by analysis using GC-MS 被引量:2
20
作者 Yanfang Zhao Jingkun Li +2 位作者 Hanyi Xie Huijuan Li Xiangfeng Chen 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2022年第4期583-589,共7页
Covalent organic nanospheres(CONs)were explored as a fiber coating for solid-phase microextraction of genotoxic impurities(GTIs)from active ingredients(AIs).CONs were synthesized by an easy solutionphase procedure at... Covalent organic nanospheres(CONs)were explored as a fiber coating for solid-phase microextraction of genotoxic impurities(GTIs)from active ingredients(AIs).CONs were synthesized by an easy solutionphase procedure at 25℃.The obtained nanospheres exhibited a high specific surface area,good thermostability,high acid and alkali resistance,and favorable crystallinity and porosity.Two types of GTIs,alkyl halides(1-iodooctane,1-chlorobenzene,1-bromododecane,1,2-dichlorobenzene,1-bromooctane,1-chlorohexane,and 1,8-dibromooctane)and sulfonate esters(methyl p-toluenesulfonate and ethyl ptoluenesulfonate),were chosen as target molecules for assessing the performance of the coating.The prepared coating achieved high enhancement factors(5097-9799)for the selected GTIs.The strong affinity between CONs and GTIs was tentatively attributed to π-π and hydrophobicity interactions,large surface area of the CONs,and size-matching of the materials.Combined with gas chromatography-mass spectrometry(GC-MS),the established analytical method detected the GTIs in capecitabine and imatinib mesylate samples over a wide linear range(0.2-200 ng/g)with a low detection limit(0.04-2.0 ng/g),satisfactory recovery(80.03%-109.5%),and high repeatability(6.20%-14.8%)and reproducibility(6.20%-14.1%).Therefore,the CON-coated fibers are promising alternatives for the sensitive detection of GTIs in AI samples. 展开更多
关键词 Covalent organic nanospheres Solid-phase microextraction Genotoxic impurities Gas chromatography-mass spectrometry
下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部